留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Review of chemical recycling and reuse of carbon fiber reinforced epoxy resin composites

TIAN Zi-shang WANG Yu-qi HOU Xiang-lin

田梓赏, 王玉琪, 侯相林. 炭纤维增强环氧树脂复合材料的化学回收与再利用研究进展. 新型炭材料(中英文), 2022, 37(6): 1021-1045. doi: 10.1016/S1872-5805(22)60652-8
引用本文: 田梓赏, 王玉琪, 侯相林. 炭纤维增强环氧树脂复合材料的化学回收与再利用研究进展. 新型炭材料(中英文), 2022, 37(6): 1021-1045. doi: 10.1016/S1872-5805(22)60652-8
TIAN Zi-shang, WANG Yu-qi, HOU Xiang-lin. Review of chemical recycling and reuse of carbon fiber reinforced epoxy resin composites. New Carbon Mater., 2022, 37(6): 1021-1045. doi: 10.1016/S1872-5805(22)60652-8
Citation: TIAN Zi-shang, WANG Yu-qi, HOU Xiang-lin. Review of chemical recycling and reuse of carbon fiber reinforced epoxy resin composites. New Carbon Mater., 2022, 37(6): 1021-1045. doi: 10.1016/S1872-5805(22)60652-8

炭纤维增强环氧树脂复合材料的化学回收与再利用研究进展

doi: 10.1016/S1872-5805(22)60652-8
基金项目: 中国科学院青年创新促进会(2021173);国家自然科学基金(51703237)
详细信息
    通讯作者:

    王玉琪,副研究员. E-mail:wangyuqi@sxicc.ac.cn

    侯相林,研究员. E-mail:houxianglin@sxicc.ac.cn

  • 中图分类号: TQ319

Review of chemical recycling and reuse of carbon fiber reinforced epoxy resin composites

Funds: This work was supported financially by the Youth Innovation Promotion Association CAS (2021173) and the National Natural Science Foundation of China (51703237)
More Information
  • 摘要: 炭纤维增强环氧树脂复合材料以其优异的力学性能被广泛应用于交通运输、航空航天等领域。近年来,炭纤维增强环氧树脂复合材料的回收利用引起了全世界的关注。化学回收是一种有前景的方法,它可以选择性地破坏环氧树脂的特定化学键,实现环氧树脂的可控化学降解。复合材料中的环氧树脂被降解为单体或低聚物,高价值炭纤维可回收利用。首先,本文综述了炭纤维增强环氧树脂复合材料化学回收方法的研究进展,主要包括超临界和亚临界流体、氧化降解、醇解、电化学回收等。然后,简要介绍了可回收热固性树脂的合成及解聚机理,其应用有利于炭纤维增强环氧树脂复合材料中各组分的回收和再利用。最后,提出了化学回收炭纤维增强环氧树脂复合材料和制备高性能可回收环氧树脂材料可能的发展方向。
  • FIG. 1955.  FIG. 1955.

    FIG. 1955..  FIG. 1955.

    Figure  1.  (a) Schematic diagram of swelling and rapid degradation of thermosetting epoxy resin. (b) SEM images of swollen epoxy resin[59]. Reprinted with permission by American Chemical Society

    Figure  2.  (a) Schematic diagram of swelling and depolymerization[69]. (b) Schematic diagram of pretreatment and degradation of CFRCs[70]. Reprinted with permission by Elsevier

    Figure  3.  Schematic diagram of electrochemical recovery of CFRCs[74]. Reprinted with permission by Elsevier

    Figure  4.  SEM images of (a) vCFs, (b) rCFs with a current of 4 mA, (c) rCFs with a current of 20 mA and (d) rCFs with a current of 25 mA[71]. Reprinted with permission by Elsevier

    Figure  5.  Photos of (a) CFRP waste and (b) rCFs. SEM images of (c) vCFs and (d) rCFs[79]. Reprinted with permission by American Chemical Society

    Figure  6.  Schematic diagram of preparation of oil absorbing material[81]. Reprinted with permission by Elsevier

    Figure  7.  Transesterification reaction in vitrimer[24]

    Figure  8.  The repair process of CFRCs with surface damage[82]. Reprinted with permission by WILEY-VCH

    Figure  9.  Dynamic disulfide bonds in vitrimer and their cleavage mechanisms[88,90]

    Figure  10.  Synthetic route of polyimines[94]

    Figure  11.  Synthetic route and 3 repeating units of MB-PACM[95]

    Figure  12.  Synthetic route and 3 repeating units of PBE-DDM or VBE-DDM[96]

    Figure  13.  Hydrolysis of acetal bonds[95]

    Figure  14.  Synthetic route of HBA-CHDMVG or HOBA-CHDMVG[99]

    Table  1.   The main recycling methods of CFRCs

    MethodsSecondary classificationProductsAdvantagesDisadvantages
    Mechanical recycling-Powder, fibersLow processing cost, easy operationLow value-added products
    Thermal recyclingPyrolysis (anaerobic)Fibers, pyrolytic oil or tar, pyrolysis gasEasy operation, fibers can be recycledToxic gases are produced,
    e.g. NOx, SOx, CO
    fluidized bed technique
    (aerobic)
    Thermal energy, combustion gasEasy operation, heat can be recoveredToxic gases are produced,
    e.g. NOx or SOx
    Chemical recyclingSupercritical liquids
    (water, alcohols, etc.)
    Fibers, small molecule organic chemicalsFibers can be reclaimedThe matrix is decomposed into
    complex small molecules
    Strong oxidants (nitric acid,
    hydrogen peroxide, etc.)
    Fibers, small molecule organic chemicalsFibers can be reclaimedThe matrix is oxidized into
    complex small molecules
    下载: 导出CSV

    Table  2.   Summary of degradation conditions of CFRCs with supercritical water

    CatalystConditionsMechanical characteristicsRef.
    No catalyst405 ± 2 °C, 28 ± 1 MPa, t = 10, 30, 60 and 120 minTensile strength: 18%-36% reduction;
    Modulus elasticity: 7.2%-20.2% reduction
    [19]
    0.5 mol·L−1 KOH523-673 K, 4.0-27.0 MPa, t = 1-30 minTensile strength: 2%-10% reduction[26]
    0.05 mol·L−1 KOH395 °C, 27.0 MPa, t = 15, 30 and 60 minFlexural strength retained 80%-95%[27]
    Oxygen440 ± 10 °C, 30 ± 1 MPa, t = 25-35 minTensile strength : 3.13 GPa (rCFs),
    3.11 GPa (vCFs)
    [28]
    No catalyst350 °C, 30 min, water, CO2-expanded water
    or water/acetone ratio of 20∶80 (v/v)
    -[29]
    No catalyst320 °C, 18 ± 1 MPa, 2 h, water/acetone ratio of 20∶80 (v/v)-[30]
    No catalyst300-380 °C, 16-30 MPa, t = 0-150 min,
    water/acetone ratio of 80∶20 (v/v)
    Clean fibers can be recycled above
    320 °C. Under extreme conditions,
    fibers were severely damaged
    [20]
    0.05 mol·L−1 ZnCl2, MgCl2 and
    0.005 mol·L−1 AlCl3
    300 °C, 45 min, water/acetone ratio of 80∶20 (v/v)-[31]
    下载: 导出CSV

    Table  3.   Conditions of CFRCs degradation with subcritical/near-critical water

    CatalystConditionsMechanical characteristicsRef.
    No catalyst260 °C, 3.0 MPa, 75 min-[33]
    1 mol·L−1 sulfuric acid260 °C, 6.0 MPa, 90 minTensile strength decreased by 1.8%[34]
    0.4 mol·L−1, H2SO4 or
    0.5-1.0 mol·L−1 KOH
    270 °C, 45 min-[35]
    KOH and phenol315 °C, 9.0 MPa, 45 minTensile strength: 2.67 GPa (rCFs), 2.62 GPa
    (vCFs after size removal)
    [36]
    No catalysta. 260-280 °C, t = 30-60 min b. 300-340 °C, t = 30-60 min-[32]
    No catalyst260-300 °C, 6-30 MPaTensile strength: 3.27 GPa (vCFs), 3.63 GPa (rCFs)
    at 300 °C for 60 min
    [37]
    下载: 导出CSV

    Table  4.   A comparison of degradation conditions of CFRCs with super- and subcritical alcohols

    CatalystSolventConditionsMechanical characteristicsRef.
    No catalystn-propanol450 °C, 5 MPaTensile strength: 3.90 GPa (rCFs),
    4.09 GPa (vCFs);
    Tensile modulus: 230 GPa (rCFs),
    242 GPa (vCFs)
    [40]
    No catalystn-propanol310 °C, 5.2 MPa, 20 minTensile strength: rCFs (4325 MPa (T600S), 5203 MPa (T700S), 4322 MPa (STS 5631)); vCFs (4338 MPa (T600S), 5220 MPa (T700S), 4415 MPa (STS 5631))[42]
    No catalystMethanol, ethanol, n-propanol, iso-propanol, n-butanol, and acetone280-360 °CThe tensile strength of rCFs by supercritical n-butanol and n-propanol can maintain 98% of that of the vCFs[25]
    No catalystMethanol, ethanol, n-propanol, iso-propanol, n-butanol, and acetone280-360 °CThe tensile strength of rCFs by supercritical n-butanol and n-propanol can maintain 98% of that of the vCFs[43]
    No catalystMethanolBatch reactor: 270 °C, 8 MPa, 90 min
    Semi-flow reactor: 285 °C,
    8 MPa, 80 min
    Compared with the tensile strength of the vCFs, the tensile strength of the rCFs in the batch reactor was reduced by 7%, and that in the semi-flow reactor was reduced by 9%[38]
    No catalystMethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, tert-butanol, acetone, and methyl ethyl ketone320 °C, 1 MPa, 20 minThe tensile strength of the rCFs did not decrease significantly[44]
    No catalystAcetone350 °C, 2-14 MPa-[21]
    0.016-0.50 mol·L−1 KOH, NaOH or CsOHMethanol, ethanol, n-propanol, acetone200-450 °C, 15.5 minThe rCFs retained 85%-99% of the tensile strength of the vCFs[39]
    0.2% KOHiso-propanol300 °C, 5 MPa, 20 min-[45]
    1% KOH1-propanol320 °C, 60 min-[41]
    1% KOH1-propanol320 °C, 60 minTensile strength: 3.47 GPa (rCFs)[46]
    1% KOH1-propanol320 °C, 180 minThe tensile strength of the rCFs retained 90% of that of the vCFs when the reaction time was less than 90 min, but the tensile strength decreased by 15% after 180 min[47]
    0.02 mol·L−1 KOHn-butanol330 °C, 30 min-[48]
    0.36 mol·L−1 KOHMethanol210 °C, 120 min-[49]
    No catalystEthylene glycol/water ratio of 5400 °CTensile strength: 3.4 GPa (rCFs),
    3.5 GPa (vCFs)
    [50]
    下载: 导出CSV

    Table  5.   Oxidation recovery of CFRCs and its degradation products

    MaterialConditionsProductsMechanical characteristicsRef.
    CF, bisphenol A epoxy resin, isophoronediamine curing agent (IPDA)8 mol·L−1 nitric acid solution, material/nitric acid (6 g∶100 mL),
    90 °C, 12 h
    Mixtures consisting of mainly of 2,4-dinitrophenol and 2-nitro-4-carboxylphenol-[51]
    52% CF, 8% GF, epoxy resin cured by amine12 mol·L−1 nitric acid solution, material/nitric acid (100 g∶1.8 L), liquid flow of 1.0 cm/s, 90 °C, 6 hThe main components were 2,4-dinitrophenol, O-nitrophenol and organic acidsThe tensile strength of the rCFs was reduced by 2.91%[55]
    Bisphenol F epoxy resin, amine curing agent (MDA)4 mol·L−1 nitric acid solution, 80 °C, normal pressure, 150 hMonomers or dimers of the resin-[57]
    GF, Bisphenol F epoxy resin, DDM4 mol·L−1 nitric acid solution, 80 °C, normal pressure, 450 hSimilar to the monomers and dimers of resin-[58]
    Bisphenol F epoxy resin (EPICLON 830), aromatic and alicyclic amine curing agent (MXDA, BAC, MDA, IPDA, NBDA, MPDA)4 mol·L−1 nitric acid solution,
    80 °C, t = 30-168 h
    Small molecules of low molecular weight-[56]
    Bisphenol F epoxy resin (EPICLON 830), alicyclic amine curing agent (BAC)4 mol·L−1 nitric acid solution,
    80 °C, 168 h
    Mixtures of 2-amino-4-nitrophenol, 2,6-diamino-4-nitrophenol and picramic acid-[2]
    Prepreg7.1 mol·L−1 nitric acid solution,
    80 °C, 30 min
    -The tensile strength and tensile modulus of the rCFs were close to those of the vCFs[3]
    Bisphenol A epoxy resin (ER-51), DDM4 mol·L−1 nitric acid solution,
    60 °C, 3 h
    Oligomers of high macromolecular weight-[59]
    CF, epoxy resin (JR-236 EP), acyclic amine (JH-239)Acetone/30% H2O2 (1∶2, v/v),
    60 °C, 30 min
    Bisphenol A and its derivativesThe tensile strength of the rCFs retained above 90% of the tensile strength of the vCFs when the temperature was below 100 °C[52]
    CF, epoxy resin (JR-236 EP), acyclic amine (JH-239)DMF/H2O2 (1∶1, v/v),
    90 °C, 30 min
    -The tensile strength of the rCFs remained more than 95% of the vCFs[60]
    DGEBA/amine2 mol·L−1 nitric acid/9 mol·L−1 H2O2 (98/2, v/v), 65 °C, 9 h,
    material/solvent (1∶60)
    Products contained molecules similar in structure to the DGEBA monomer as well as other substances of low molecular weightThe tensile strength of the rCFs was slightly reduced[9]
    DGEBA/amine14 mol·L−1 acetic acid/9 mol·L−1 H2O2 (95∶5, v/v), 65 °C, 5 hMixtures of phenols and phenolic derivatives and substances containing C=O groupsThe rCFs is clean and long, and its tensile strength is comparable to that of the vCFs[54]
    CF, epoxy resin (RIM935 grade), aliphatic amine curing agent (RIM936 grade)50% H2O2/TA (2, v/w), 120 °C,
    1 min of microwave irradiation
    -The rCFs retained more than 92% of the tensile strength and 94% of the strain-to-failure retentions of the vCFs[53]
    Bi-functional epoxy resin (Araldite GY 6010), tri-functional epoxy (Araldite MY 0510), and tetra-functional epoxy (Araldite MY 721), curing agent (3,3’-diaminodiphenyl sulfone, 3,3’-DDS)a. K3PO4/benzyl alcohol system, 200 °C
    b. Acetic acid/30% H2O2 (10/1, v/v), 110 °C, 1 h
    -The rCFs by acid digestion had no resin residue and no defects[10]
    Bisphenol A epoxy resin, 3,3’-DDSAcetic acid/30% H2O2 (6/1, v/v),
    110 °C, 6 h
    --[61]
    Bisphenol A epoxy resin, 3,3’-DDSAcetic acid/30% H2O2 (20/1, w/w),
    110 °C, 4 h
    Bisphenol A and tertiary amines-[62]
    CF, Bisphenol A epoxy resin, 3,3’-DDS5% MnCl2 and AlCl3/acetic acid,
    10 1010 kPa of O2, 180 °C, 43 h
    DDS monomer, bisphenol AThe rCFs remain woven structure[1]
    下载: 导出CSV

    Table  6.   Alcoholysis of CFRCs and their degradation products

    MaterialConditionsProductsMechanical characteristicsRef.
    Bisphenol A epoxy resin, methyl tetrahydrophthalic anhydride (MeTHPA)0.2 mol·L−1 N-methyl-4-piperidinol/EG, 180 °C, 1 h, argon environment, without stirringAn oligomer containing multifunctional hydroxyl groups-[63]
    CF, Epon resin 828, MeHHPATBD/EG/NMP, 170 °C, 1.5 h, ordinary pressureAn oligomer is 2,2-bis[4-(2,3-dihydroxypropoxy) phenyl] propaneTensile strength: 5.49 ± 0.74 GPa (rCFs), 4.81 ± 0.72 GPa (vCFs);
    Young’s modulus: 278.6 ± 14.4 GPa (rCFs), 280.3 ± 13.5 (vCFs)
    [64]
    CF, bisphenol A epoxy resin, MeHHPANaOH/benzyl alcohol or K3PO4/benzyl alcohol (1/10, w/w), 195 °C, 40 minDicarboxylic acid salt and linear resin macromoleculesThe tensile strength of rCFs maintained over 90% of that of the vCFs[65]
    Bisphenol A epoxy resin (ER-51), MeTHPANaOH/PEG200, 180 °C, atmospheric pressure, 50 min--[66]
    CF, GF, bisphenol A epoxy resin (ER-51), MeTHPANaOH/PEG200, 200 °C, atmospheric pressure, 4 h-The tensile strength of the rCFs was 94%-96% of the original fibers[67]
    CF, bisphenol F epoxy resin, curing agent (polyoxyalkyleneamine, 4,4’-methylenebis, and 2,2’-dimethyl-4,4’-methylenebis)KOH/PEG400, 160 °C, atmospheric pressure, 200 minA mixture of monomer and dimer of bisphenol F-epichlorohydrin epoxy resinTensile strength: 3.89 GPa (rCFs),
    4.07 GPa (vCFs);
    Elastic modulus: 173.79 GPa (rCF), 179.27 GPa (vCF)
    [68]
    Tetraglycidyl 4,4’-diaminodiphenyl methane (TGDDM), 4,4’-DDS20% ZnCl2/ethanol,
    190 °C, 5 h
    An oligomer containing amine and hydroxyl groupsThe surface of the rCFs was clean and smooth[69]
    Bisphenol A epoxy resin (ER-51),
    MeTHPA
    K3PO4/ethanol, 120 °C, 3 h;
    1 mol·L−1 hydrochloric acid
    solution, 60 °C, 1 h
    Products contained carboxylic groups-[70]
    下载: 导出CSV

    Table  7.   Specific conditions of electrochemical recovery of CFRCs

    YearConditionsMechanical characteristicsRef.
    2015Electrolyte concentration: 3%, 10% and 20%;
    Applied current: 4, 10, 20 and 25 mA;
    t = 21 days
    Tensile strength: 4382 MPa (vCFs), 3515 MPa (rCFs) at 3% NaCl solution and 25 mA applied current[71]
    2016Electrolyte concentration: 40 g/L NaOH solution or simulated pore water solution;
    Applied current: 0, 0.5 and 4 mA;
    t = 50 days
    -[72]
    2019Electrolyte concentration: 0.5%, 1.0%, 2.0% and 3.0%;
    KOH catalyst: 0.5, 1.0 and 1.5 g/L;
    Applied current: 20, 40, 62.5, 78.1, 104.2 and 156.3 mA;
    Temperature: 40, 60 and 75 °C;
    t = 36-72 h
    Tensile strength: 4.641 GPa (vCFs), 4.083 GPa (rCFs) at 2% NaCl solution, 20 mA current, 1% KOH solution and 75 °C;
    IFSS: 31.00 MPa (vCFs), 37.43 MPa (rCFs) at 2% NaCl solution, 20 mA current and 1% KOH solution
    [73]
    2020Electrolyte: NaCl, KCl, NaOH, KOH and Na2CO3;
    Electrolyte concentration: 0.01-1.0 mol·L−1;
    voltage: 2.5-15.0 V;
    t = 0-20 h
    A few carbon fibers were fractured and had irregular fiber waviness[74]
    2020Electrolyte: pH 6.86 phosphoric acid aqueous solution;
    Voltage: 15 V;
    t = 0-180 min
    There were small voids on the surface of the rCFs[75]
    下载: 导出CSV

    Table  8.   Recycling methods and degradation products of CFRCs

    MaterialSystemProductsMechanical characteristicsRef.
    CF, bisphenol A epoxy resin, PAtetraline or 9,10-dihydroanthracene, 340 °C, 2 hThe main products were bisphenol A, phenol, p-isopropylphenol, phthalic anhydride, benzoic acid, and benzeneTensile strength: 3950 MPa (rCFs)[76]
    Epoxy resin (DER 331), nadic methyl anhydride (NMA)1% HPW aqueous solution, material/HPW aqueous solution (6 g/20 g), 190 °C, 5 hOligomer contained muti-functional active groups-[77]
    Bisphenol A epoxy resin (ER-51), MeTHPADETA, 130 °C, 50 minOligomers contained a large of reactive groups (amide and hydroxyl groups)-[78]
    CF, bisphenol A epoxy resin, 4,4’-methylene dimethyl cyclohexylamine60% ZnCl2 solution,
    220 °C, 9 h
    Product was similar to the DGEBA dimerThe rCFs retained more than 90% of the tensile strength of vCFs[22]
    CF, bisphenol A epoxy resin, 4,4’-methylene dimethyl cyclohexylamine15% AlCl3/CH3COOH,
    180 °C, 6 h
    Oligomer contained carbon skeleton structures of cured epoxy resinTensile strength: 2871.96 MPa (rCFs),
    2937.29 MPa (vCFs)
    Tensile modulus: 168.46 GPa (rCFs),
    171.77 GPa (vCFs)
    [79]
    下载: 导出CSV
  • [1] Navarro C A, Ma Y, Michael K H, et al. Catalytic, aerobic depolymerization of epoxy thermoset composites[J]. Green Chemistry,2021,23(17):6356-6360. doi: 10.1039/D1GC01970H
    [2] Hanaoka T, Arao Y, Kayaki Y, et al. New approach to recycling of epoxy resins using nitric acid: regeneration of decomposed products through hydrogenation[J]. ACS Sustainable Chemistry & Engineering,2021,9(37):12520-12529.
    [3] Hanaoka T, Ikematsu H, Takahashi S, et al. Recovery of carbon fiber from prepreg using nitric acid and evaluation of recycled CFRP[J]. Composites Part B:Engineering,2022,231:109560. doi: 10.1016/j.compositesb.2021.109560
    [4] Zhang J, Chevali V S, Wang H, et al. Current status of carbon fibre and carbon fibre composites recycling[J]. Composites Part B:Engineering,2020,193:108053. doi: 10.1016/j.compositesb.2020.108053
    [5] Lefeuvre A, Garnier S, Jacquemin L, et al. Anticipating in-use stocks of carbon fiber reinforced polymers and related waste flows generated by the commercial aeronautical sector until 2050[J]. Resources, Conservation & Recycling,2017,125:264-272.
    [6] Lefeuvre A, Garnier S, Jacquemin L, et al. Anticipating in-use stocks of carbon fibre reinforced polymers and related waste generated by the wind power sector until 2050[J]. Resources, Conservation & Recycling,2019,141:30-39.
    [7] Meng F, Olivetti E A, Zhao Y, et al. Comparing life cycle energy and global warming potential of carbon fiber composite recycling technologies and waste management options[J]. ACS Sustainable Chemistry & Engineering,2018,6(8):9854-9865.
    [8] Pickering S J. Recycling technologies for thermoset composite materials-current status[J]. Composites Part A:Applied Science and Manufacturing,2006,37(8):1206-1215. doi: 10.1016/j.compositesa.2005.05.030
    [9] Das M, Varughese S. A novel sonochemical approach for enhanced recovery of carbon fiber from CFRP waste using mild acid-peroxide mixture[J]. ACS Sustainable Chemistry & Engineering,2016,4(4):2080-2087.
    [10] Ma Y, Nutt S. Chemical treatment for recycling of amine/epoxy composites at atmospheric pressure[J]. Polymer Degradation and Stability,2018,153:307-317. doi: 10.1016/j.polymdegradstab.2018.05.011
    [11] Kim K-W, Lee H-M, An J-H, et al. Recycling and characterization of carbon fibers from carbon fiber reinforced epoxy matrix composites by a novel super-heated-steam method[J]. Journal of Environmental Management,2017,203:872-879. doi: 10.1016/j.jenvman.2017.05.015
    [12] Rani M, Choudhary P, Krishnan V, et al. A review on recycling and reuse methods for carbon fiber/glass fiber composites waste from wind turbine blades[J]. Composites Part B:Engineering,2021,215:108768. doi: 10.1016/j.compositesb.2021.108768
    [13] Yang J, Liu J, Liu W, et al. Recycling of carbon fibre reinforced epoxy resin composites under various oxygen concentrations in nitrogen-oxygen atmosphere[J]. Journal of Analytical and Applied Pyrolysis,2015,112:253-261. doi: 10.1016/j.jaap.2015.01.017
    [14] Giorgini L, Benelli T, Mazzocchetti L, et al. Pyrolysis as a way to close a CFRC life cycle: carbon fibers recovery and their use as feedstock for a new composite production[J]. Times of Polymers (TOP) and Composites,2014,1599:354-357.
    [15] Jiang G, Pickering S J. Structure-property relationship of recycled carbon fibres revealed by pyrolysis recycling process[J]. Journal of Materials Science,2015,51(4):1949-1958.
    [16] Nie W, Liu J, Liu W, et al. Decomposition of waste carbon fiber reinforced epoxy resin composites in molten potassium hydroxide[J]. Polymer Degradation and Stability,2015,111:247-256. doi: 10.1016/j.polymdegradstab.2014.12.003
    [17] Wu T, Zhan W, Jia X, et al. Solvent-free rapid degradation of epoxy composites and recycling application of high performance carbon fibers through the synergic catalysis effect of molten salts and titanium dioxide[J]. Polymer Degradation and Stability,2022,196:109849. doi: 10.1016/j.polymdegradstab.2022.109849
    [18] Wu T, Zhang W, Jin X, et al. Efficient reclamation of carbon fibers from epoxy composite waste through catalytic pyrolysis in molten ZnCl2[J]. RSC Advances,2019,9(1):377-388. doi: 10.1039/C8RA08958B
    [19] Kim Y N, Kim Y-O, Kim S Y, et al. Application of supercritical water for green recycling of epoxy-based carbon fiber reinforced plastic[J]. Composites Science and Technology,2019,173:66-72. doi: 10.1016/j.compscitech.2019.01.026
    [20] Keith M J, Román-Ramírez L A, Leeke G, et al. Recycling a carbon fibre reinforced polymer with a supercritical acetone/water solvent mixture: comprehensive analysis of reaction kinetics[J]. Polymer Degradation and Stability,2019,161:225-234. doi: 10.1016/j.polymdegradstab.2019.01.015
    [21] Okajima I, Sako T. Recycling fiber-reinforced plastic using supercritical acetone[J]. Polymer Degradation and Stability,2019,163:1-6. doi: 10.1016/j.polymdegradstab.2019.02.018
    [22] Deng T, Liu Y, Cui X, et al. Cleavage of C–N bonds in carbon fiber/epoxy resin composites[J]. Green Chemistry,2015,17(4):2141-2145. doi: 10.1039/C4GC02512A
    [23] Montarnal D, Capelot M, Tournilhac F, et al. Silica-like malleable materials from permanent organic networks[J]. Science,2011,334(6058):965-968. doi: 10.1126/science.1212648
    [24] Han J, Liu T, Hao C, et al. A catalyst-free epoxy vitrimer system based on multifunctional hyperbranched polymer[J]. Macromolecules,2018,51(17):6789-6799. doi: 10.1021/acs.macromol.8b01424
    [25] Cheng H, Huang H, Zhang J, et al. Degradation of carbon fiber-reinforced polymer using supercritical fluids[J]. Fibers and Polymers,2017,18(4):795-805. doi: 10.1007/s12221-017-1151-4
    [26] Piñero-Hernanz R, Dodds C, Hyde J, et al. Chemical recycling of carbon fibre reinforced composites in nearcritical and supercritical water[J]. Composites Part A:Applied Science and Manufacturing,2008,39(3):454-461. doi: 10.1016/j.compositesa.2008.01.001
    [27] Knight C C, Zeng C, Zhang C, et al. Fabrication and properties of composites utilizing reclaimed woven carbon fiber by sub-critical and supercritical water recycling[J]. Materials Chemistry and Physics,2015,149:317-323.
    [28] Bai Y, Wang Z, Feng L. Chemical recycling of carbon fibers reinforced epoxy resin composites in oxygen in supercritical water[J]. Materials and Design,2010,31(2):999-1002. doi: 10.1016/j.matdes.2009.07.057
    [29] Oliveux G, Dandy L O, Leeke G A. Degradation of a model epoxy resin by solvolysis routes[J]. Polymer Degradation and Stability,2015,118:96-103. doi: 10.1016/j.polymdegradstab.2015.04.016
    [30] Oliveux G, Bailleul J-L, Gillet A, et al. Recovery and reuse of discontinuous carbon fibres by solvolysis: realignment and properties of remanufactured materials[J]. Composites Science and Technology,2017,139:99-108. doi: 10.1016/j.compscitech.2016.11.001
    [31] Keith M J, Leeke G A, Khan P, et al. Catalytic degradation of a carbon fibre reinforced polymer for recycling applications[J]. Polymer Degradation and Stability,2019,166:188-201. doi: 10.1016/j.polymdegradstab.2019.05.020
    [32] Gong X, Kang H, Liu Y, et al. Decomposition mechanisms and kinetics of amine/anhydride-cured DGEBA epoxy resin in near-critical water[J]. RSC Advances,2015,5(50):40269-40282. doi: 10.1039/C5RA03828F
    [33] Liu Y, Wei H, Wu S, et al. Kinetic study of epoxy resin decomposition in near-critical water[J]. Chemical Engineering & Technology,2012,35(4):713-719.
    [34] Liu Y, Shan G, Meng L. Recycling of carbon fibre reinforced composites using water in subcritical conditions[J]. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing,2009,520(1-2):179-183. doi: 10.1016/j.msea.2009.05.030
    [35] Liu Y, Kang H, Gong X, et al. Chemical decomposition of epoxy resin in near-critical water by an acid-base catalytic method[J]. RSC Advances,2014,4(43):22367-22373. doi: 10.1039/C4RA02023E
    [36] Liu Y, Liu J, Jiang Z, et al. Chemical recycling of carbon fibre reinforced epoxy resin composites in subcritical water: synergistic effect of phenol and KOH on the decomposition efficiency[J]. Polymer Degradation and Stability,2012,97(3):214-220. doi: 10.1016/j.polymdegradstab.2011.12.028
    [37] Sokoli H U, Beauson J, Simonsen M E, et al. Optimized process for recovery of glass- and carbon fibers with retained mechanical properties by means of near- and supercritical fluids[J]. The Journal of Supercritical Fluids,2017,124:80-89. doi: 10.1016/j.supflu.2017.01.013
    [38] Okajima I, Hiramatsu M, Shimamura Y, et al. Chemical recycling of carbon fiber reinforced plastic using supercritical methanol[J]. The Journal of Supercritical Fluids,2014,91:68-76. doi: 10.1016/j.supflu.2014.04.011
    [39] Piñero-Hernanz R, García-Serna J, Dodds C, et al. Chemical recycling of carbon fibre composites using alcohols under subcritical and supercritical conditions[J]. The Journal of Supercritical Fluids,2008,46(1):83-92. doi: 10.1016/j.supflu.2008.02.008
    [40] Hyde J R, Lester E, Kingman S, et al. Supercritical propanol, a possible route to composite carbon fibre recovery: A viability study[J]. Composites Part A:Applied Science and Manufacturing,2006,37(11):2171-2175. doi: 10.1016/j.compositesa.2005.12.006
    [41] Yan H, Lu C, Jing D, et al. Chemical degradation of TGDDM/DDS epoxy resin in supercritical 1-propanol: Promotion effect of hydrogenation on thermolysis[J]. Polymer Degradation and Stability,2013,98(12):2571-2582. doi: 10.1016/j.polymdegradstab.2013.09.026
    [42] Jiang G, Pickering S J, Lester E H, et al. Characterisation of carbon fibres recycled from carbon fibre/epoxy resin composites using supercritical n-propanol[J]. Composites Science and Technology,2009,69(2):192-198. doi: 10.1016/j.compscitech.2008.10.007
    [43] Cheng H, Huang H, Liu Z, et al. Reaction kinetics of CFRP degradation in supercritical Fluids[J]. Journal of Polymers and the Environment,2017,26(5):2153-2165.
    [44] Okajima I, Watanabe K, Haramiishi S, et al. Recycling of carbon fiber reinforced plastic containing amine-cured epoxy resin using supercritical and subcritical fluids[J]. The Journal of Supercritical Fluids,2017,119:44-51. doi: 10.1016/j.supflu.2016.08.015
    [45] Jiang G, Pickering S J, Lester E H, et al. Decomposition of epoxy resin in supercritical isopropanol[J]. Industrial & Engineering Chemistry Research,2010,49(10):4535-4541.
    [46] Yan H, Lu C-x, Jing D-q, et al. Chemical degradation of amine-cured DGEBA epoxy resin in supercritical 1-propanol for recycling carbon fiber from composites[J]. Chinese Journal of Polymer Science,2014,32(11):1550-1563. doi: 10.1007/s10118-014-1519-5
    [47] Yan H, Lu C-x, Jing D-q, et al. Recycling of carbon fibers in epoxy resin composites using supercritical 1-propanol[J]. New Carbon Materials,2016,31(1):46-54. doi: 10.1016/S1872-5805(16)60004-5
    [48] Huang H, Yin Y, Cheng H, et al. Degradation mechanism of CF/EP composites in supercritical n-butanol with alkali additives[J]. Journal of Polymers and the Environment,2017,25(2):115-125. doi: 10.1007/s10924-016-0776-5
    [49] Liu J, Wang K, Ma L, et al. Insight into the role of potassium hydroxide for accelerating the degradation of anhydride-cured epoxy resin in subcritical methanol[J]. The Journal of Supercritical Fluids,2015,107:605-611.
    [50] Yildirir E, Onwudili J A, Williams P T. Recovery of carbon fibres and production of high quality fuel gas from the chemical recycling of carbon fibre reinforced plastic wastes[J]. The Journal of Supercritical Fluids,2014,92:107-114. doi: 10.1016/j.supflu.2014.05.015
    [51] Liu Y, Meng L, Huang Y, et al. Recycling of carbon/epoxy composites[J]. Journal of Applied Polymer Science,2004,94(5):1912-1916. doi: 10.1002/app.20990
    [52] Li J, Xu P-L, Zhu Y-K, et al. A promising strategy for chemical recycling of carbon fiber/thermoset composites: self-accelerating decomposition in a mild oxidative system[J]. Green Chemistry,2012,14(12):3260-3263. doi: 10.1039/c2gc36294e
    [53] Zabihi O, Ahmadi M, Liu C, et al. Development of a low cost and green microwave assisted approach towards the circular carbon fibre composites[J]. Composites Part B:Engineering,2020,184:107750. doi: 10.1016/j.compositesb.2020.107750
    [54] Das M, Chacko R, Varughese S. An efficient method of recycling of CFRP waste using peracetic acid[J]. ACS Sustainable Chemistry & Engineering,2018,6(2):1564-1571.
    [55] Lee S-H, Choi H-O, Kim J-S, et al. Circulating flow reactor for recycling of carbon fiber from carbon fiber reinforced epoxy composite[J]. Korean Journal of Chemical Engineering,2011,28(2):449-454. doi: 10.1007/s11814-010-0394-1
    [56] Hanaoka T, Arao Y, Kayaki Y, et al. Analysis of nitric acid decomposition of epoxy resin network structures for chemical recycling[J]. Polymer Degradation and Stability,2021,186:109537. doi: 10.1016/j.polymdegradstab.2021.109537
    [57] Dang W, Kubouchi M, Yamamoto S, et al. An approach to chemical recycling of epoxy resin cured with amine using nitric acid[J]. Polymer,2002,43(10):2953-2958. doi: 10.1016/S0032-3861(02)00100-3
    [58] Dang W, Kubouchi M, Sembokuya H, et al. Chemical recycling of glass fiber reinforced epoxy resin cured with amine using nitric acid[J]. Polymer,2005,46(6):1905-1912. doi: 10.1016/j.polymer.2004.12.035
    [59] Tian F, Wang X-l, Yang Y, et al. Energy-efficient conversion of amine-cured epoxy resins into functional chemicals based on swelling-induced nanopores[J]. ACS Sustainable Chemistry & Engineering,2020,8(5):2226-2235.
    [60] Xu P, Li J, Ding J. Chemical recycling of carbon fibre/epoxy composites in a mixed solution of peroxide hydrogen and N, N-dimethylformamide[J]. Composites Science and Technology,2013,82:54-59. doi: 10.1016/j.compscitech.2013.04.002
    [61] Navarro C A, Kedzie E A, Ma Y, et al. Mechanism and catalysis of oxidative degradation of fiber-reinforced epoxy composites[J]. Topics in Catalysis,2018,61(7-8):704-709. doi: 10.1007/s11244-018-0917-2
    [62] Ma Y, Navarro C A, Williams T J, et al. Recovery and reuse of acid digested amine/epoxy-based composite matrices[J]. Polymer Degradation and Stability,2020,175:109125. doi: 10.1016/j.polymdegradstab.2020.109125
    [63] Zhang L, Liu J, Nie W, et al. Degradation of anhydride-cured epoxy resin using simultaneously recyclable solvent and organic base catalyst[J]. Journal of Material Cycles and Waste Management,2017,20(1):568-577.
    [64] Kuang X, Zhou Y, Shi Q, et al. Recycling of epoxy thermoset and composites via good solvent assisted and small molecules participated exchange reactions[J]. ACS Sustainable Chemistry & Engineering,2018,6(7):9189-9197.
    [65] Ye L, Wang K, Feng H, et al. Recycling of carbon fiber-reinforced epoxy resin-based composites using a benzyl alcohol/alkaline system[J]. Fibers and Polymers,2021,22(3):811-818. doi: 10.1007/s12221-021-0266-9
    [66] Yang P, Zhou Q, Yuan X-X, et al. Highly efficient solvolysis of epoxy resin using poly(ethylene glycol)/NaOH systems[J]. Polymer Degradation and Stability,2012,97(7):1101-1106. doi: 10.1016/j.polymdegradstab.2012.04.007
    [67] Yang P, Zhou Q, Li X-Y, et al. Chemical recycling of fiber-reinforced epoxy resin using a polyethylene glycol/NaOH system[J]. Journal of Reinforced Plastics and Composites,2014,33(22):2106-2114. doi: 10.1177/0731684414555745
    [68] Jiang J, Deng G, Chen X, et al. On the successful chemical recycling of carbon fiber/epoxy resin composites under the mild condition[J]. Composites Science and Technology,2017,151:243-251. doi: 10.1016/j.compscitech.2017.08.007
    [69] Liu T, Zhang M, Guo X, et al. Mild chemical recycling of aerospace fiber/epoxy composite wastes and utilization of the decomposed resin[J]. Polymer Degradation and Stability,2017,139:20-27. doi: 10.1016/j.polymdegradstab.2017.03.017
    [70] Zhao X, Liu X, Feng K, et al. Multicycling of epoxy thermoset through a two-step strategy of alcoholysis and hydrolysis using a self-separating catalysis system[J]. ChemSusChem,2022,15(3):e202101607.
    [71] Sun H, Guo G, Memon S A, et al. Recycling of carbon fibers from carbon fiber reinforced polymer using electrochemical method[J]. Composites Part A:Applied Science and Manufacturing,2015,78:10-17. doi: 10.1016/j.compositesa.2015.07.015
    [72] Sun H, Memon S A, Gu Y, et al. Degradation of carbon fiber reinforced polymer from cathodic protection process on exposure to NaOH and simulated pore water solutions[J]. Materials and Structures,2016,49(12):5273-5283.
    [73] Zhu J-H, Chen P-y, Su M-n, et al. Recycling of carbon fibre reinforced plastics by electrically driven heterogeneous catalytic degradation of epoxy resin[J]. Green Chemistry,2019,21(7):1635-1647. doi: 10.1039/C8GC03672A
    [74] Oshima K, Matsuda S, Hosaka M, et al. Rapid removal of resin from a unidirectional carbon fiber reinforced plastic laminate by a high-voltage electrical treatment[J]. Separation and Purification Technology,2020,231:115885. doi: 10.1016/j.seppur.2019.115885
    [75] Oshima K, Hosaka M, Matsuda S, et al. Removal mechanism of epoxy resin from CFRP composites triggered by water electrolysis gas generation[J]. Separation and Purification Technology,2020,251:117296. doi: 10.1016/j.seppur.2020.117296
    [76] Braun D, von Gentzkow W, Rudolf A P. Hydrogenolytic degradation of thermosets[J]. Polymer Degradation and Stability,2001,74(1):25-32. doi: 10.1016/S0141-3910(01)00035-0
    [77] Liu T, Guo X, Liu W, et al. Selective cleavage of ester linkages of anhydride-cured epoxy using a benign method and reuse of the decomposed polymer in new epoxy preparation[J]. Green Chemistry,2017,19(18):4364-4372. doi: 10.1039/C7GC01737E
    [78] Zhao X, Wang X-L, Tian F, et al. A fast and mild closed-loop recycling of anhydride-cured epoxy through microwave-assisted catalytic degradation by trifunctional amine and subsequent reuse without separation[J]. Green Chemistry,2019,21(9):2487-2493. doi: 10.1039/C9GC00685K
    [79] Wang Y, Cui X, Ge H, et al. Chemical recycling of carbon fiber reinforced epoxy resin composites via selective cleavage of the carbon–nitrogen bond[J]. ACS Sustainable Chemistry & Engineering,2015,3(12):3332-3337.
    [80] Tian F, Yang Y, Wang X-L, et al. From waste epoxy resins to efficient oil/water separation materials via a microwave assisted pore-forming strategy[J]. Materials Horizons,2019,6(8):1733-1739. doi: 10.1039/C9MH00541B
    [81] Liu X, Tian F, Zhao X, et al. Recycling waste epoxy resin as hydrophobic coating of melamine foam for high-efficiency oil absorption[J]. Applied Surface Science,2020,529:147151. doi: 10.1016/j.apsusc.2020.147151
    [82] Yu K, Shi Q, Dunn M L, et al. Carbon fiber reinforced thermoset composite with near 100% recyclability[J]. Advanced Functional Materials,2016,26(33):6098-6106. doi: 10.1002/adfm.201602056
    [83] Kuang X, Guo E, Chen K, et al. Extraction of biolubricant via chemical recycling of thermosetting polymers[J]. ACS Sustainable Chemistry & Engineering,2019,7(7):6880-6888.
    [84] Chen J-H, An X-P, Li Y-D, et al. Reprocessible epoxy networks with tunable physical properties: synthesis, stress relaxation and recyclability[J]. Chinese Journal of Polymer Science,2018,36(5):641-648. doi: 10.1007/s10118-018-2027-9
    [85] Chen J-H, Lu J-H, Pu X-L, et al. Recyclable, malleable and intrinsically flame-retardant epoxy resin with catalytic transesterification[J]. Chemosphere,2022,294:133778. doi: 10.1016/j.chemosphere.2022.133778
    [86] Mu S, Zhang Y, Zhou J, et al. Recyclable and mechanically robust palm oil-derived epoxy resins with reconfigurable shape-memory properties[J]. ACS Sustainable Chemistry & Engineering,2020,8(13):5296-5304.
    [87] Liu T, Hao C, Zhang S, et al. A self-healable high glass transition temperature bioepoxy material based on vitrimer chemistry[J]. Macromolecules,2018,51(15):5577-5585. doi: 10.1021/acs.macromol.8b01010
    [88] Azcune I, Odriozola I. Aromatic disulfide crosslinks in polymer systems: self-healing, reprocessability, recyclability and more[J]. European Polymer Journal,2016,84:147-160. doi: 10.1016/j.eurpolymj.2016.09.023
    [89] Johnson L M, Ledet E, Huffman N D, et al. Controlled degradation of disulfide-based epoxy thermosets for extreme environments[J]. Polymer,2015,64:84-92. doi: 10.1016/j.polymer.2015.03.020
    [90] de Luzuriaga A R, Martin R, Markaide N, et al. Epoxy resin with exchangeable disulfide crosslinks to obtain reprocessable, repairable and recyclable fiber-reinforced thermoset composites[J]. Materials Horizons,2016,3(3):241-247. doi: 10.1039/C6MH00029K
    [91] Zhou Q, Zhu X, Zhang W, et al. Recyclable high performance epoxy composites based on double dynamic carbon-nitrogen and disulfide bonds[J]. ACS Applied Polymer Materials,2020,2(5):1865-1873. doi: 10.1021/acsapm.0c00105
    [92] Takahashi A, Ohishi T, Goseki R, et al. Degradable epoxy resins prepared from diepoxide monomer with dynamic covalent disulfide linkage[J]. Polymer,2016,82:319-326. doi: 10.1016/j.polymer.2015.11.057
    [93] Wang B, Ma S, Yan S, et al. Readily recyclable carbon fiber reinforced composites based on degradable thermosets: a review[J]. Green Chemistry,2019,21(21):5781-5796. doi: 10.1039/C9GC01760G
    [94] Taynton P, Ni H, Zhu C, et al. Repairable woven carbon fiber composites with full recyclability enabled by malleable polyimine networks[J]. Advanced Materials,2016,28(15):2904-2909. doi: 10.1002/adma.201505245
    [95] Wang S, Ma S, Li Q, et al. Facile in situ preparation of high-performance epoxy vitrimer from renewable resources and its application in nondestructive recyclable carbon fiber composite[J]. Green Chemistry,2019,21(6):1484-1497. doi: 10.1039/C8GC03477J
    [96] Xu X, Ma S, Wu J, et al. High-performance, command-degradable, antibacterial Schiff base epoxy thermosets: synthesis and properties[J]. Journal of Materials Chemistry A,2019,7(25):15420-15431. doi: 10.1039/C9TA05293C
    [97] Hashimoto T, Meiji H, Urushisaki M, et al. Degradable and chemically recyclable epoxy resins containing acetal linkages: synthesis, properties, and application for carbon fiber-reinforced plastics[J]. Journal of Polymer Science Part A:Polymer Chemistry,2012,50(17):3674-3681. doi: 10.1002/pola.26160
    [98] Yamaguchi A, Hashimoto T, Kakichi Y, et al. Recyclable carbon fiber-reinforced plastics (CFRP) containing degradable acetal linkages: synthesis, properties, and chemical recycling[J]. Journal of Polymer Science Part A:Polymer Chemistry,2015,53(8):1052-1059. doi: 10.1002/pola.27575
    [99] Kuroyanagi M, Yamaguchi A, Hashimoto T, et al. Novel degradable acetal-linkage-containing epoxy resins with high thermal stability: synthesis and application in carbon fiber-reinforced plastics[J]. Polymer Journal,2021,54(3):313-322.
  • 加载中
图(15) / 表(8)
计量
  • 文章访问数:  1535
  • HTML全文浏览量:  772
  • PDF下载量:  253
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-07
  • 修回日期:  2022-09-14
  • 网络出版日期:  2022-09-21
  • 刊出日期:  2022-11-28

目录

    /

    返回文章
    返回