留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Synthesis and electrochemical properties of nano-Si/C composite anodes for lithium-ion batteries

YUAN Li-ye LU Chun-xiang LU Xiao-xuan YUAN Shu-xia ZHANG Meng CAO Li-juan YANG Yu

袁立业, 吕春祥, 吕晓轩, 袁淑霞, 张甍, 曹莉娟, 杨禹. 锂离子电池硅炭负极材料的制备与电化学性能研究. 新型炭材料(中英文), 2023, 38(5): 964-975. doi: 10.1016/S1872-5805(23)60707-3
引用本文: 袁立业, 吕春祥, 吕晓轩, 袁淑霞, 张甍, 曹莉娟, 杨禹. 锂离子电池硅炭负极材料的制备与电化学性能研究. 新型炭材料(中英文), 2023, 38(5): 964-975. doi: 10.1016/S1872-5805(23)60707-3
YUAN Li-ye, LU Chun-xiang, LU Xiao-xuan, YUAN Shu-xia, ZHANG Meng, CAO Li-juan, YANG Yu. Synthesis and electrochemical properties of nano-Si/C composite anodes for lithium-ion batteries. New Carbon Mater., 2023, 38(5): 964-975. doi: 10.1016/S1872-5805(23)60707-3
Citation: YUAN Li-ye, LU Chun-xiang, LU Xiao-xuan, YUAN Shu-xia, ZHANG Meng, CAO Li-juan, YANG Yu. Synthesis and electrochemical properties of nano-Si/C composite anodes for lithium-ion batteries. New Carbon Mater., 2023, 38(5): 964-975. doi: 10.1016/S1872-5805(23)60707-3

锂离子电池硅炭负极材料的制备与电化学性能研究

doi: 10.1016/S1872-5805(23)60707-3
详细信息
    通讯作者:

    袁立业,助理研究员. E-mail:cimigowatano@163.com

    吕春祥,研究员. E-mail:lucx@sxicc.ac.cn

  • 中图分类号: 127.1+1

Synthesis and electrochemical properties of nano-Si/C composite anodes for lithium-ion batteries

Funds: This work is funded by “Supported by Fundamental Research Program of Shanxi Province (20210302124312)”. We would also like to thank Shiyanjia Lab (www.shiyanjia.com) for the XRD analysis
More Information
  • 摘要: 利用微胶囊技术将酚醛树脂包覆于纳米硅表面,然后在氩气保护下高温炭化,制得硅炭复合负极材料。首先采用4种不同质量比的酚醛树脂与纳米硅制备了硅碳复合材料,得到了不同炭质厚度的硅碳复合材料。通过对其循环性能和倍率性能的比较,发现酚醛树脂与纳米硅的质量比为1∶4,即碳层厚度为4.5 nm时,电化学性能最佳。随后对该种硅碳复合材料的综合电化学性能进行了测试,该材料作为负极制备的锂离子电池具有良好的电化学性能,在电流密度为100 mA g−1的条件下,其首次放电比容量为2382 mAh g−1,首次充电比容量为1667 mAh g−1,首次库伦效率为70%。经200次充放电循环后放电比容量为835.6 mAh g−1,库伦效率为99.2%。此外,其倍率性能非常优异,在100、200、500、1000、2000及100 mA g−1电流密度下,其平均放电比容量分别为1716.4、1231.6、911.7、676.1、339.8及1326.4 mAh g−1
  • FIG. 2658.  FIG. 2658.

    FIG. 2658..  FIG. 2658.

    Figure  1.  Schematic illustration of synthesis of nano-Si/C nanocomposite

    Figure  2.  (a) Raman and (b) XRD spectra of nano-Si and nano-Si/C samples

    Figure  3.  Scanning electron microscopy (SEM) images of (a) nano-Si and (b) nano-Si/C

    Figure  4.  (a, c) TEM images of nano-Si/C; (b) SAED image for the region highlighted by red square in (a); (d) HRTEM image of nano-Si/C

    Figure  5.  TEM of nano-Si/C composite obtained by different mass ratios of phenolic resin to nano-Si: (a) 1∶2, (b) 1∶4, (c) 1∶6 and (d) 1∶8

    Figure  6.  Thermogravimetric analysis of amorphous carbon, nano-Si and nano-Si/C nanocomposites obtained by different mass ratios of phenolic resin to nano-Si

    Figure  7.  Comparison diagrams of electrochemical performance of nano-Si/C nanocomposites obtained by different mass ratios of phenolic resin to nano-Si and (a) cycle performance and (b) rate performance

    Figure  8.  FE-SEM images of nano-Si and the different nano-Si/C electrodes after 50 cycles: (a) nano-Si electrode, (b-e) nano-Si/C electrodes (Phenolic resin/nano-Si=1∶2, 1∶4, 1∶6 and 1∶8, respectively)

    Figure  9.  Electrochemical performance of nano-Si/C electrode with an amorphous carbon coating thickness of 4.5 nm: (a) the discharge and charge curves, (b) cycle voltammetry measurements, (c) cycling property at 100 mA g−1 and coulombic efficiency of nano-Si/C nanocomposite, (d) the high-rate cycling performance of nano-Si/C electrode

    Figure  10.  Nyquist plots of nano-Si and nano-Si/C electrodes

    Table  1.   Comparison of the recent work on Si-based composites as anodes for Lithium-ion batteries

    SamplesCurrent density/A g−1Cycle numberCapacity/mAh g−1 after cyclesInitial CE/%References
    Si@C-AL-zao-NO20.2015088265.0[47]
    Si@HC/CNF0.20100102153.4[48]
    Si@TiO20.4210080451.3[49]
    HSi@C0.5020088652.4[50]
    Si-PBI1.00200112860.3[51]
    nc-Si@HCS0.2525081069.0[52]
    Nano-Si/C0.1020083570.0This work
    下载: 导出CSV
  • [1] Huang X, Meng J, Liu W, et al. Lithium-ion battery lifetime extension with positive pulsed current charging[J]. Ieee Transactions on Industrial Electronics,2024,71(1):484-635.
    [2] Jin X, Han Y, Zhang Z, et al. Mesoporous Single-crystal lithium titanate enabling fast-charging li-ion batteries[J]. Advanced Materials,2022,34(210935618
    [3] Liu W P, Xu H R, Qin H Q, et al. The effect of carbon coating on graphite@nano-Si composite as anode materials for Li-ion batteries[J]. Journal of Solid State Electrochemistry,2019,23:3363-3372. doi: 10.1007/s10008-019-04413-3
    [4] Wang M Y, Yin L, Li M Q, et al. Low-cost heterogeneous dual-carbon shells coated silicon monoxide porous composites as anodes for high-performance lithium-ion batteries[J]. Journal of Colloid and Interface Science,2019,549:225-235. doi: 10.1016/j.jcis.2019.04.076
    [5] Liangruksa M, Kanaphan Y, Meethong N, et al. First-principles investigation of defective graphene anchored with small silicon clusters as a potential anode material for lithium-ion batteries[J]. Surface Science. 2023, 737(122250).
    [6] Li P, Miao C, Yi D, et al. Pomegranate like silicon-carbon composites prepared from lignin-derived phenolic resins as anode materials for lithium-ion batteries[J]. New Journal of Chemistry,2023
    [7] Dong Q C, Yang J, Wu M Y, et al. Template-free synthesis of cobalt silicate nanoparticles decorated nanosheets for high performance lithium-ion batteries[J]. ACS Sustain Chemistry & Engineering,2018,6:15591-15597.
    [8] Neiner D, Chiu H W, Kauzlarich S M. Low-temperature solution route to macro scopic amounts of hydrogen terminated silicon nanoparticles[J]. Journal of the American Chemical Society,2006,128(34):11016-11021. doi: 10.1021/ja064177q
    [9] Trill J, Tao C, Winter M, et al. NMR investigations on the lithiation and delithiation of nano silicon-based anodes for Li-ion batteries[J]. Journal of Solid State Electrochemistry,2011,15(2):349-356. doi: 10.1007/s10008-010-1260-0
    [10] Hwa Y, Kim W S, Yu B C, et al. Facile synthesis of Si nanoparticles using magnesium silicide reduction and its carbon composite as a high-performance anode for Li-ion batteries[J]. Journal of Power Sources,2014,252(252):144-149.
    [11] Feng K, Li M, Liu W, et al. Silicon-based anodes for lithium-ion batteries: from fundamentals to practical applications[J]. Small,2018,14(8):1702737. doi: 10.1002/smll.201702737
    [12] Liu X H, Wang J W, Huang S, et al. In situ atomic-scale imaging of electrochemical lithiation in silicon[J]. Nature Nanotechnology,2012,7(11):749. doi: 10.1038/nnano.2012.170
    [13] Leung K, Soto F, Hankins K, et al. Stability of solid electrolyte interphase components on lithium metal and reactive anode material surfaces[J]. Journal of Physical Chemistry C,2016,120(12):6302-6313. doi: 10.1021/acs.jpcc.5b11719
    [14] Zhang W, Luo G, Xu Q, et al. Enhanced reversible lithium storage for nano-Si with a<10 nm homogeneous porous carbon coating layer[J]. Electrochimica Acta,2018,269:1-10. doi: 10.1016/j.electacta.2018.02.143
    [15] Xiao Q, Zhang Q, Fan Y, et al. Soft silicon anodes for lithium ion batteries[J]. Energy & Environmental Science,2014,7(7):2261-2268.
    [16] Wu H, Chan G, Choi J W, et al. Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control[J]. Nature Nanotechnology,2012,7(5):310-315. doi: 10.1038/nnano.2012.35
    [17] Li Q, Yu M, Huang Y, et al. Phosphorus-doped silicon copper alloy composites as high-performance anode materials for lithium-ion batteries[J]. Journal of Electroanalytical Chemistry. 2023, 944(117684).
    [18] Kim J S, Choi W, Cho K Y, et al. Effect of polyimide binder on electrochemical characteristics of surface-modified silicon anode for lithium ion batteries[J]. Journal of Power Sources,2013,244:521-526. doi: 10.1016/j.jpowsour.2013.02.049
    [19] Ge M, Lu Y, Ercius P, et al. Large-scale fabricaton, 3D tomography, and lithium-ion battery application of porous silicon[J]. Nano Letters,2013,14(1):261-268.
    [20] Chai L, Wang X, Bi C, et al. Lifetime optimization of amorphous silicon thin-film anodes for lithium-ion batteries[J]. ACS Applied Energy Materials,2023
    [21] Hui W, Yi C. Designing nanostructured Si anodes for high energy lithium ion batteries[J]. Nano Today,2012,7(5):414-429. doi: 10.1016/j.nantod.2012.08.004
    [22] He Z, Liu L, Liu S, et al. A novel design idea of high-stability silicon anodes for lithium-ion batteries: Building in-situ "high-speed channels" while reserving space[J]. Chemical Engineering Journal. 2023, 472(144991).
    [23] Wang B, Li W, Wu T, et al. Self-template construction of mesoporous silicon submicrocube anode for advanced lithium ion batteries[J]. Energy Storage Materials,2018,15:139-147. doi: 10.1016/j.ensm.2018.03.025
    [24] Wang G Q, Xu B, Shi J, et al. Confined Li ion migration in the silicon-graphene complex system: an ab initio investigation[J]. Applied Surface Science,2018,436:505-510. doi: 10.1016/j.apsusc.2017.11.237
    [25] BerlaL A, Lee S W, Cui Y, et al. Mechanical behavior of electrochemically lithiated silicon[J]. Journal of Power Sources,2015,273:41-51. doi: 10.1016/j.jpowsour.2014.09.073
    [26] Zhou Y, Guo H, Yong Y, et al. Introducing reduced grapheme oxide to improve the electrochemical performance of silicon-based materials encapsulated by carbonized polydopamine layer for lithium ion batteries[J]. Materials Letters,2017,195:164-167. doi: 10.1016/j.matlet.2017.02.127
    [27] Zhou Y, Guo H J, Yan G H, et al. Fluidized bed reaction towards crystalline embedded amorphous Si anode with much enhanced cycling stability[J]. Chemical Communication,2018,54(30):3755-3758. doi: 10.1039/C8CC00575C
    [28] Roy A K, Zhong M, Schwab M G, et al. Preparation of a binder-free three-dimensional carbon foam/silicon composite as potential material for lithium ion battery anodes[J]. ACS Applied Materials & Interfaces,2016,8:7343-7348.
    [29] Fang M, Wang Z, Chen X, et al. Sponge-like reduced graphene oxide/silicon/carbon nanotube composites for lithium ion batteries[J]. Applied Surface Science,2018,436:345-353. doi: 10.1016/j.apsusc.2017.11.070
    [30] Ye X, Gan C, Huang L, et al. Improving lithium-ion diffusion kinetics in nano-Si@C anode materials with hierarchical MoS2 decoration for high-performance lithium-ion batteries[J]. Chemelectrochem,2021,8(7):1270-1279.
    [31] Ma Y, Younesi R, Pan R, et al. Constraining Si particles within graphene foam monolith: Interfacial modification for high-performance Li+ storage and flexible integrated configuration[J]. Advanced Functional Materials,2016,26:6797-6806. doi: 10.1002/adfm.201602324
    [32] Kaushik K, Marco-Tulio F R, Stephen E T, et al. Calendar-life versus cycle-life aging of lithium-ion cells with silicon-graphite composite electrodes[J]. Electrochimica Acta,2018,280:221-228. doi: 10.1016/j.electacta.2018.05.101
    [33] Li Y, Xu G J, Yao Y F, et al. Improvement of cyclability of silicon-containing carbon nanofiber anodes for lithium-ion batteries by employing succinic anhydride as an electrolyte additive[J]. Journal of Solid State Electrochemistry,2013,17(5):1393-1399. doi: 10.1007/s10008-013-2005-7
    [34] Jing S L, Jiang H, Hu Y J, et al. Face-to face contact and open-void coinvolved Si/C nanohybrids lithium-ion battery anodes with extremely long cycle life[J]. Advanced Functional Materials,2015,25:5395-5401. doi: 10.1002/adfm.201502330
    [35] Zhang R, Du Y, Li D, et al. Highly reversible and large lithium storage in mesoporoussi/c nanocomposite anodes with silicon nanoparticles embedded in a carbon framework[J]. Advanced Materials,2014,26:6749-6755. doi: 10.1002/adma.201402813
    [36] Zhang X, Qiu X, Kong D, et al. Silicene flowers: A dual stabilized silicon building block for high-performance lithium battery anodes[J]. ACS Nano,2017,11(7):7476-7484. doi: 10.1021/acsnano.7b03942
    [37] Li C B, Li T, Kang L, et al. One-step synthesis of hollow structures Si/C composites based on expandable microspheres as anodes for lithium ion batteries[J]. Electrochemistry Communication,2016,72:69-73. doi: 10.1016/j.elecom.2016.09.006
    [38] Xu Z L, Zhang B, Kim J K. Electrospun carbon nanofiber anodes containing monodispersed Si and nanoparticles and graphene oxide with exceptional high rate capacities[J]. Nano Energy,2014,6:27-35. doi: 10.1016/j.nanoen.2014.03.003
    [39] Qi Z Y, Dai L Q, Wang Z F, et al. Optimizing the carbon coating to eliminate electrochemical interface polarization in a high performance silicon anode for use in a lithium-ion battery[J]. New Carbon Materials,2022,37(1):245-258.
    [40] Gao P F, Fu J W, Yang J, et al. Microporous carbon coated silicon core/shell nanocomposite via in situ polymerization for advanced Li-ion battery anode material[J]. Physical Chemistry Chemical Physics,2009,47(11):11101-11105.
    [41] Yi Z, Lin N, Xu T J, et al. TiO2 coated Si/C interconnected microsphere with stable framework and interface for high-rate lithium storage[J]. Chemical Engineering Journal,2018,347:214-222. doi: 10.1016/j.cej.2018.04.101
    [42] Cao C T, Iwnetim I A, Eric S, et al. Solid electrolyte interphase on native oxide-terminated silicon anodes for Li-ion batteries[J]. Joule,2019,3:762-781. doi: 10.1016/j.joule.2018.12.013
    [43] Schroder K W, Dylla A G, Harris S J, et al. Role of surface oxides in the formation of solid-electrolyte interphases at silicon electrodes for lithium-ion batteries[J]. ACS Applied Materials & Interfaces,2014,6:21510-21524.
    [44] He W, Tian H J, Xin F X, et al. Scalable fabrication of micro-sized bulk porous Si from Fe-Si alloy as a high performance anode for lithium-ion batteries[J]. Journal of Materials Chemistry A,2015,3:17956-17962. doi: 10.1039/C5TA04857E
    [45] Zhou X, Yin Y X, Wan L J, et al. Self-assembled nanocomposite of silicon nanoparticles encapsulated in graphene through electrostatic attraction for lithium-ion batteries[J]. Advanced Energy Materials,2012,2(9):1086-1090. doi: 10.1002/aenm.201200158
    [46] Li Q, Chen D, Li K, et al. Electrostatic self-assembly bmSi@C/rGO composite a anode material for lithium ion battery[J]. Electrochimica Acta,2016,202:140-146. doi: 10.1016/j.electacta.2016.04.019
    [47] Du L L, Wei L, Chao L, et al. Lignin derived Si@C composites as a high performance anode material for lithium ion batteries[J]. Solid State Ionics,2018,319:77-82.
    [48] Chen Y L, Hu Y, Shen Z, et al. Hollow coreeshell structured silicon@carbon nanoparticles embed in carbon nanofibers as binder-free anodes for lithium-ion batteries[J]. Journal of Power Sources,2017,342:467-475.
    [49] Fang S, Shen L F, Xu G Y, et al. Rational design of void-involved Si@TiO2 nanospheres as high performance anode material for lithium-ion batteries[J]. ACS Applied Materials & Interfaces,2014,6:6497-6503.
    [50] Fang S, Tong Z K, Nie P, et al. Raspberry-liked nanostructured silicon composite anode for high performance lithium-ion batteries[J]. ACS Applied Materials & Interfaces,2017,9:18766-18773.
    [51] Nie P, Liu X Y, Fu R R, et al. Mesoporous silicon anodes by using polybenzimidazole derived pyrrolic N-enriched carbon toward high-energy Li-ion batteries[J]. ACS Energy letters,2017,2:1279-1287.
    [52] Jaumann T, Gerwig M, Balach J, et al. Dichlorosilane-derived nano-silicon inside hollow carbon spheres as a high-performance anode for Li-ion batteries[J]. Journal of Materials Chemistry A,2017,5:9262-9271.
    [53] Shi J W, Gao H Y, Hu G X, et al. Core-shell structured Si@C nanocomposite for high-performance Li-ion batteries with a highly viscous gel as precursor[J]. Journal of Power Sources,2019,438:227001.
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  371
  • HTML全文浏览量:  193
  • PDF下载量:  127
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-10
  • 修回日期:  2020-10-29
  • 网络出版日期:  2022-11-03
  • 刊出日期:  2023-10-01

目录

    /

    返回文章
    返回