留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

The effect of the molecular structure of naphthalene-based mesophase pitch on the properties of carbon fibers derived from it

XU Hui-tao GUO Jian-guang LI Wen-long LI Xuan-ke

徐辉涛, 郭建光, 李文龙, 李轩科. 萘系中间相沥青分子结构对其炭纤维性能的影响. 新型炭材料(中英文), 2023, 38(2): 369-377. doi: 10.1016/S1872-5805(23)60709-7
引用本文: 徐辉涛, 郭建光, 李文龙, 李轩科. 萘系中间相沥青分子结构对其炭纤维性能的影响. 新型炭材料(中英文), 2023, 38(2): 369-377. doi: 10.1016/S1872-5805(23)60709-7
XU Hui-tao, GUO Jian-guang, LI Wen-long, LI Xuan-ke. The effect of the molecular structure of naphthalene-based mesophase pitch on the properties of carbon fibers derived from it. New Carbon Mater., 2023, 38(2): 369-377. doi: 10.1016/S1872-5805(23)60709-7
Citation: XU Hui-tao, GUO Jian-guang, LI Wen-long, LI Xuan-ke. The effect of the molecular structure of naphthalene-based mesophase pitch on the properties of carbon fibers derived from it. New Carbon Mater., 2023, 38(2): 369-377. doi: 10.1016/S1872-5805(23)60709-7

萘系中间相沥青分子结构对其炭纤维性能的影响

doi: 10.1016/S1872-5805(23)60709-7
基金项目: 国家自然科学基金(U1864207)
详细信息
    通讯作者:

    李轩科,博士,教授. E-mail:xkli8524@sina.com

  • 中图分类号: TQ342+74

The effect of the molecular structure of naphthalene-based mesophase pitch on the properties of carbon fibers derived from it

Funds: National Natural Science Foundation of China (U1864207)
More Information
  • 摘要: 中间相沥青基炭纤维因具有高模量、低电阻率、高导热等特性,在许多领域有广阔的应用前景。本文分别以采用HF/BF3催化萘一步法制备的中间相沥青(AR-MP)和采用AlCl3催化萘两步法制备的中间相沥青(N-MP)为原料,制备了高性能炭纤维。通过元素分析、TG-MS、FT-IR、13C-NMR、MALDI-TOF-MS、XRD和SEM等手段对上述沥青和纤维进行了分析表征,对比了不同催化聚合工艺制备的中间相沥青的分子结构和性能,并进一步探究了中间相沥青分子结构差异对其炭纤维结构和性能的影响。结果表明:AR-MP分子构型偏向于半刚性的棒状,含有更多的环烷结构和甲基侧链,其预氧化后的纤维显示出更好的碳平面取向,使其石墨化纤维具有更好的热导率(716 W/m·K);而N-MP分子构型偏向于刚性的圆盘状、芳香度高,其纤维在后续热处理过程中产生的缺陷更少,石墨化后具有更大的拉伸强度(3.47 GPa)。
  • FIG. 2240.  FIG. 2240.

    FIG. 2240..  FIG. 2240.

    Figure  1.  Typical optical micrographs of (a) AR-MP and (b) N-MP

    Figure  2.  FT-IR spectra of AR-MP and N-MP

    Figure  3.  Solid 13C-NMR spectra of AR-MP and N-MP

    Figure  4.  MALDI-TOF-MS spectra of AR-MP and N-MP

    Figure  5.  (a) TG and (b) DSC curves of AR-MP and N-MP under inert atmosphere

    Figure  6.  (a) TG and (b) DSC curves of AR-PFs and N-PFs under air atmosphere

    Figure  7.  XRD patterns of mesophase pitches, spun pitch fibers, pre-oxidized fibers and carbonized fibers

    Figure  8.  (a) d002 and (b) Lc values of spun pitch fibers, pre-oxidized fibers, carbonized fibers and graphitized fibers

    Figure  9.  SEM images of (a, c) AR-GFs and (b, d) N-GFs

    Table  1.   General properties of AR-MP and N-MP

    SampleSP (°C)TSaQIElemental analysis (wt%)n(H)/n(C)Ash contentSpinning viscosity (Pa·s)
    CHNS
    AR-MP23442.9%26.7%95.14.8000.050.602×10−522
    N-MP24037.2%32.6%95.84.1200.040.525×10−537
    Note: SP—softening point, TSa—toluene soluble, QI—quinoline insoluble
    下载: 导出CSV

    Table  2.   Aromatic carbon and Aliphatic carbon content of AR-MP and N-MP

    SampleAliphatic (%)Aromatic (%)Car3/Car2fa
    CchainCH2CH3CHarCar3Car2Cars
    AR-MP10.0611.285.794.8840.3816.7710.842.410.73
    N-MP4.514.103.696.1554.5115.1611.893.590.88
    Note: Cchain—bridge/hydroaromatic structures (methylene carbons to two aromatic rings); CH2—all the rest of methylene carbons; CH3—methyl carbons; CHar—protonated aromatic carbons; Car3—peri-condensed aromatic carbons; Car2—cata-condensed aromatic carbons; Cars—aromatic carbons joined to aliphatic chains; fa—aromaticity
    下载: 导出CSV

    Table  3.   The X-ray parameters of mesophase pitches and spun pitch fibers

    Sampled002 (nm)FWHM (°)Lc (nm)N
    AR-MP0.35203.0802.939
    N-MP0.34104.6061.966
    AR-PFs0.35172.8483.1710
    N-PFs0.34884.6371.956
    下载: 导出CSV

    Table  4.   The properties and X-ray parameters of AR-GFs and N-GFs

    SamplePropertiesCrystal parameters
    TSb (GPa)TM (GPa)ρ (μΩ·m)TC (W/(m·K))d002 (nm)La (nm)Lc (nm)
    AR-GFs 3.02±0.78 634±75 1.77 716±43 0.3369 60.12 30.36
    N-GFs 3.47±0.48 652±70 1.82 704±45 0.3370 62.09 29.03
    Note: TSb—tensile strength; ρ—resistivity; TM—tensile modulus; TC—thermal conductivity; DC—dispersion coefficient
    下载: 导出CSV
  • [1] Edie D D, Robinson K E, Fleurot O, et al. High thermal conductivity ribbon fibers from naphthalene-based mesophase[J]. Carbon,1994,32(6):1045-1054. doi: 10.1016/0008-6223(94)90213-5
    [2] Yuan G M, Li X K, Dong Z J, et al. Microstructure analyses of mesophase pitch-based carbon fibers with high thermal conductivity[J]. Journal of Functional Materials,2011,42(10):1806-1809.
    [3] Mochida I, Shimizu K, Korai Y, et al. Preparation of mesophase pitch from aromatic hydrocarbons by the aid of HF/BF3[J]. Carbon,1990,28(2-3):311-319. doi: 10.1016/0008-6223(90)90005-J
    [4] Korai Y, Nakamura M, Mochida I, et al. Mesophase pitches prepared from methylnaphthalene by the aid of HF/BF3[J]. Carbon,1991,29(4-5):561-567. doi: 10.1016/0008-6223(91)90121-X
    [5] Yoon S H, Korai Y, Mochida I. Spinning characteristics of mesophase pitches derived from naphthalene and methylnaphthalene with HF/BF3[J]. Carbon,1993,31(6):849-856. doi: 10.1016/0008-6223(93)90184-C
    [6] Yi J, Yuan G M, Li X K, et al. Preparation and characterization of large diameter pitch based carbon fiber /ABS resin composites with high thermal conductivities[J]. New Carbon Materials,2015,30(1):63-69.
    [7] Mochida I, Korai Y, Kua CH, et al. Chemistry of synthesis, structure, preparation and application of aromatic-derived mesophase pitch[J]. Carbon,2000,38(2):305-328. doi: 10.1016/S0008-6223(99)00176-1
    [8] Mochida I, Shimizu K, Korai Y, et al. Mesophase pitch derived from isotropic anthracene pitch produced catalytically with HF/BF3[J]. Bulletin of the Chemical Society of Japan,1990,63(10):2945-2950. doi: 10.1246/bcsj.63.2945
    [9] Mochida I,. Mesophase pitch catalytically prepared from anthracene with HF/BF3[J]. Carbon,1992,30(1):55-61. doi: 10.1016/0008-6223(92)90106-7
    [10] Zhao X S, Lu M G Q, Song C. Immobilization of aluminum chloride on MCM-41 as a new catalyst system for liquid-phase isopropylation of naphthalene[J]. Journal of Molecular Catalysis A:Chemical,2003,191(1):67-74. doi: 10.1016/S1381-1169(02)00366-7
    [11] Yamada Y, Matsumoto S, Fukuda K, et al. Optically anisotropic texture in tetrhydroquinoline soluble matter of carbonaceous mesophase[J]. Tanso,1981,107(1):144-146.
    [12] Mochida I, Kudo K, Fukuda N, et al. Carbonization of pitches-IV: Carbonization of polycyclic aromatic hydrocarbons under the presence of aluminum chloride catalyst[J]. Carbon,1975,13(2):135-139. doi: 10.1016/0008-6223(75)90270-5
    [13] Guo J G, Zhu H, Xu H T, et al. Spinnable mesophase pitch prepared via co-carbonization of fluid catalytic cracking decant oil and synthetic naphthalene pitch[J]. Energy & Fuels,2018,34(2):2566-2573.
    [14] Lee S, Eom Y, Kim B J, et al. The thermotropic liquid crystalline behavior of mesophase pitches with different chemical structures[J]. Carbon,2015,81(1):694-701.
    [15] Li X K, Yan G L, Che Z M. A method of preparing high purity mesophase pitch and the high purity mesophase pitch: CN, CN102899061A[P]. 2013.
    [16] Russo C, Stanzione F, Tregrossi A, et al. Infrared spectroscopy of some carbon-based materials relevant in combustion: Qualitative and quantitative analysis of hydrogen[J]. Carbon,2014,74(8):127-138.
    [17] Díaz C, Blanco C G. NMR: A powerful tool in the Characterization of coal tar pitch[J]. Energy & Fuels,2003,17(4):907-913.
    [18] Yoon S H, Korai Y, Mochida I. Assessment and optimization of the stabilization process of mesophase pitch fibers by thermal analyses[J]. Carbon,1994,32(2):281-287. doi: 10.1016/0008-6223(94)90191-0
    [19] Miura K, Nakagawa H, Hashimoto K. Examination of the oxidative stabilization reaction of the pitch-based carbon fiber through continuous measurement of oxygen chemisorption and gas formation rate[J]. Carbon,1995,33(3):275-282. doi: 10.1016/0008-6223(94)00133-K
    [20] Yoon S H, Korai K, Mochida I, et al. The flow properties of mesophase pitches derived from methylnaphthalene and naphthalene in the temperature range of their spinning[J]. Carbon,1994,32(2):273-280. doi: 10.1016/0008-6223(94)90190-2
    [21] Mochida I, Yoon S H, Korai Y. Mesoscopic structure and properties of liquid crystalline mesophase pitch and its transformation into carbon fiber[J]. The Chemical Record,2002,2(2):81-101. doi: 10.1002/tcr.10016
    [22] Ogale A A, Lin C, Anderson D P, et al. Orientation and dimensional changes in mesophase pitch-based carbon fiber[J]. Carbon,2002,40(8):1309-1319. doi: 10.1016/S0008-6223(01)00300-1
    [23] Yuan G M, Li X K, Xiong X Q, et al. A comprehensive study on the oxidative stabilization of mesophase pitch based tape-shaped thick fibers with oxygen[J]. Carbon,2017,115(5):59-76.
    [24] Lv Y G, Zha Q F, Wu D, et al. The influence of spinning temperature of mesophase on the structures and properties of large-diameter mesophase pitch carbon fiber[J]. Carbon Techniques,1994(4):1-5.
    [25] Matsumoto T, Mochida I. Oxygen distribution in oxidatively stabilized mesophase pitch fiber[J]. Carbon,1993,31(1):143-147. doi: 10.1016/0008-6223(93)90167-9
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  437
  • HTML全文浏览量:  235
  • PDF下载量:  101
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-09
  • 修回日期:  2022-10-18
  • 网络出版日期:  2022-11-03
  • 刊出日期:  2023-04-07

目录

    /

    返回文章
    返回