留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于拉曼光谱mapping技术研究低温循环对炭纤维增强聚酰亚胺复合薄膜界面微观力学的影响

贾立双 吴琪琳 陈惠芳

贾立双, 吴琪琳, 陈惠芳. 基于拉曼光谱mapping技术研究低温循环对炭纤维增强聚酰亚胺复合薄膜界面微观力学的影响. 新型炭材料(中英文), 2023, 38(6): 1135-1142. doi: 10.1016/S1872-5805(23)60712-7
引用本文: 贾立双, 吴琪琳, 陈惠芳. 基于拉曼光谱mapping技术研究低温循环对炭纤维增强聚酰亚胺复合薄膜界面微观力学的影响. 新型炭材料(中英文), 2023, 38(6): 1135-1142. doi: 10.1016/S1872-5805(23)60712-7
JIA Li-shuang, WU Qi-lin, CHEN Hui-fang. Raman mapping microspectroscopy of the effects of cryogenic cycling on the interfacial micromechanics of carbon fiber-reinforced polyimide composites. New Carbon Mater., 2023, 38(6): 1135-1142. doi: 10.1016/S1872-5805(23)60712-7
Citation: JIA Li-shuang, WU Qi-lin, CHEN Hui-fang. Raman mapping microspectroscopy of the effects of cryogenic cycling on the interfacial micromechanics of carbon fiber-reinforced polyimide composites. New Carbon Mater., 2023, 38(6): 1135-1142. doi: 10.1016/S1872-5805(23)60712-7

基于拉曼光谱mapping技术研究低温循环对炭纤维增强聚酰亚胺复合薄膜界面微观力学的影响

doi: 10.1016/S1872-5805(23)60712-7
基金项目: 国家重点研发计划项目(2016YFB0303201)。
详细信息
    作者简介:

    贾立双,硕士研究生. E-mail:1772722089@qq.com

    通讯作者:

    吴琪琳,教授. E-mail:wql@dhu.edu.cn

    陈惠芳,教授. E-mail:hfchen@dhu.edu.cn

  • 中图分类号: TQ127.1+1

Raman mapping microspectroscopy of the effects of cryogenic cycling on the interfacial micromechanics of carbon fiber-reinforced polyimide composites

Funds: National Key R&D Program of China (2016YFB0303201)
More Information
  • 摘要: 碳纳米管选用(CNT)作为拉曼应力传感器,通过建立拉曼光谱mapping技术研究了经多次低温循环(−198~25 °C,0~300次)的炭纤维增强聚酰亚胺复合薄膜(CF/CNT-PI)的界面微观应力变化。研究发现:聚酰亚胺薄膜(CNT-PI)即使经300次低温循环,树脂内部应力依然为~175 MPa,循环次数对树脂内部应力影响较小,表明该材料具有良好的耐低温性。进一步研究了炭纤维(CF)增强的CNT-PI薄膜的内应力变化,获得了炭纤维、界面、树脂基体区域的微观应力mapping分布,发现CF区域的受力大于基体部分,表明CF在该体系中起到了对应力最主要载体的作用,并发挥了良好的增强效果。在循环次数<250次时,微观应力变化不大;但当循环次数高达300次时,炭纤维及界面区域应力值分别提高了21%和12.9%,应力在材料内部的集中增大会降低材料的力学性能。本研究有效地定量了外界温度循环变化下复合材料的增强材料、基体及界面的微观应力分布,这为检测复合材料服役过程中的使用安全性提供了一种理论依据与评判手段。
  • FIG. 2785.  FIG. 2785.

    FIG. 2785..  FIG. 2785.

    图  1  CNT-PI、CF/CNT-PI复合薄膜低温循环示意图:(a)两种薄膜样品,(b)低温循环设定,(c)Raman mapping面扫描

    Figure  1.  Schematic sketches of cryogenic cycles of CNT-PI and CF/CNT-PI films: (a) Two samples, (b) the setting of cryogenic cycles and (c) Raman mapping scanning

    图  2  CNT-PI薄膜的应变-G'峰峰位关系(插图为PI和CNT-PI薄膜的拉曼光谱图)

    Figure  2.  The relationship between strain and Raman shift (insert is the Raman spectra of PI and CNT-PI films)

    图  3  低温循环处理后CNT-PI 复合薄膜的G'/应力分布图:0、50、100、200、250、300次

    Figure  3.  G' band and stress distributions of CNT-PI films after different cryogenic cycle times: 0, 50, 100, 200, 250, 300

    图  4  低温循环后CNT-PI复合薄膜的(a)G'峰峰位与频率的柱状关系图,红色曲线是高斯拟合曲线(以300次循环样品为例)(b)应力统计变化规律

    Figure  4.  (a) Histogram of G' band position (300 cycles as an example) and (b) micro-stress statistics of CNT-PI films after cryogenic cycles

    图  5  CF/CNT-PI 复合薄膜在不同次数的低温循环作用后G'峰位分布图:0、50、100、200、250、300次 (两根黑线表示炭纤维边界)

    Figure  5.  G' band distributions of CF/CNT-PI films after different cryogenic cycles: 0, 50, 100, 200, 250, 300 (the two black lines indicate carbon fiber boundaries)

    图  6  低温循环后微观应力统计变化规律:(a)CF/CNT-PI薄膜的CF、界面、PI区域;(b)CNT-PI和CF/CNT-PI复合薄膜基体区域

    Figure  6.  Micro-stress statistics of (a) CF/CNT-PI films and (b) the matrix regions of both CNT-PI and CF/CNT-PI films after different cryogenic cycles

    图  7  (a)300次低温循环后CF/CNT-PI 复合薄膜的表面形貌;(b)(a)中方框部位局部放大图

    Figure  7.  (a) SEM images of CF/CNT-PI films after 300 cryogenic cycles, (b) local enlarge image of (a)

  • [1] Cheng P, Peng Y, Li S, et al. 3D printed continuous fiber reinforced composite lightweight structures: a review and outlook[J]. Composites Part B: Engineering,2022:110450. doi: 10.1016/j.compositesb.2022.110450
    [2] Khan J B, Smith A C, Tuohy P M, et al. Experimental electrical characterisation of carbon fibre composites for use in future aircraft applications[J]. IET Science, Measurement & Technology,2019,13(8):1131-1138.
    [3] 王赤, 严俊, 吴伟仁, 等. 嫦娥四号首次登陆月背开启科学探索之旅[J]. 科学新闻,2019(1):17.

    WANG Chi, YAN Jun, WU Wei-ren, et al. Change-4 probe landed on the moon's back for the first time to start a scientific exploration journey[J]. Science News,2019(1):17.
    [4] Grugel R, Hastings W, Rabenberg E, et al. Evaluation of carbon fiber composites fabricated using ionic liquid based epoxies for cryogenic fluid applications[J]. Results in physics,2016,6:1188-1189. doi: 10.1016/j.rinp.2016.11.011
    [5] Grogan D M, Leen S B, Semprimoschnig C, et al. Damage characterisation of cryogenically cycled carbon fibre/PEEK laminates[J]. Composites Part A: Applied Science and Manufacturing,2014,66:237-250. doi: 10.1016/j.compositesa.2014.08.007
    [6] Hohe J, Schober M, Fliegener S, et al. Effect of cryogenic environments on failure of carbon fiber reinforced composites[J]. Composites Science and Technology,2021,212:108850. doi: 10.1016/j.compscitech.2021.108850
    [7] Öndürücü A, Kayıran H F. The effect of cold environment on the buckling behavior of hybrid composites prepared by using carbon/aramid/glass[J]. Journal of Thermoplastic Composite Materials,2022,35(8):1115-1131. doi: 10.1177/0892705720930769
    [8] Morkavuk S, Köklü U, Bağcı M, et al. Cryogenic machining of carbon fiber reinforced plastic (CFRP) composites and the effects of cryogenic treatment on tensile properties: A comparative study[J]. Composites Part B:Engineering,2018,147:1-11. doi: 10.1016/j.compositesb.2018.04.024
    [9] HE Yu-xin, YANG Song, Liu Hu, et al. Reinforced carbon fiber laminates with oriented carbon nanotube epoxy nanocomposites: magnetic field assisted alignment and cryogenic temperature mechanical properties[J]. Journal of colloid and interface science,2018,517:40-51. doi: 10.1016/j.jcis.2018.01.087
    [10] Kara M, Kırıcı M, Tatar A C, et al. Impact behavior of carbon fiber/epoxy composite tubes reinforced with multi-walled carbon nanotubes at cryogenic environment[J]. Composites Part B:Engineering,2018,145:145-154. doi: 10.1016/j.compositesb.2018.03.027
    [11] LIU Wei, GAO Yang, Liu Xiao-yun, et al. Tensile and interfacial properties of dry-jet wet-spun and wet-spun polyacrylonitrile-based carbon fibers at cryogenic condition[J]. Journal of Engineered Fibers and Fabrics,2019,14:1-8.
    [12] Yang Lei, Li Zhi-wei, Xu Hao, et al. Prediction on residual stresses of carbon/epoxy composite at cryogenic temperature[J]. Polymer Composites,2019,40(9):1-9.
    [13] Yu-ting L I U, Lu L I, Jia-pei W, et al. Effect of carbon nanotubes on interfacial properties of a carbon fiber/polycarbonate composite[J]. New Carbon Materials,2021,36(3):639-648. doi: 10.1016/S1872-5805(21)60035-5
    [14] Liu Y, Ma Z, He Y, et al. A review of fibrous graphite materials: graphite whiskers, columnar carbons with a cone-shaped top, and needle-and rods-like polyhedral crystals[J]. New Carbon Materials,2023,38(1):18-35. doi: 10.1016/S1872-5805(23)60719-X
    [15] 王美玲, 边文凤. 近性能炭纤维力学性能与微观结构的关联性[J]. 新型炭材料,2020,35(1):42-49. doi: 10.1016/S1872-5805(20)60474-7

    WANG M L, BIAN W F. The relationship between the mechanical properties and microstructures of carbon fibers[J]. New Carbon Materials,2020,35(1):42-49. doi: 10.1016/S1872-5805(20)60474-7
    [16] LEI Z K, WANG Q, QIU W. Micromechanics of fiber–crack interaction studied by micro-Raman spectroscopy: Bridging fiber[J]. Optics and Lasers in Engineering,2013,51(4):358-363. doi: 10.1016/j.optlaseng.2012.12.003
    [17] Jin S Y, Young R J, Eichhorn S J. Controlling and mapping interfacial stress transfer in fragmented hybrid carbon fibre–carbon nanotube composites[J]. Composites Science & Technology,2014,100:121-127.
    [18] Abiko K, Kato Y, Hohjo H, et al. Raman imaging of residual stress distribution in epoxy resin and metal interface[J]. Journal of Raman Spectroscopy,2020,51(1):193-200. doi: 10.1002/jrs.5756
    [19] Tsirka K, Karalis G, Paipetis A. Raman strain sensing and interfacial stress transfer of hierarchical CNT-Coated carbon fibers[J]. Journal of Materials Engineering and Performance,2018,27(10):5095-5101. doi: 10.1007/s11665-018-3532-2
    [20] Chipara D M, Panaitescu D M, Lozano K, et al. Raman spectroscopy and molecular bases of elasticity: SEBS-graphite composites[J]. Polymer,2019,176:74-88. doi: 10.1016/j.polymer.2019.05.019
    [21] Reis R H M, Garcia Filho F C, Nunes L F, et al. Impact resistance of epoxy composites reinforced with amazon guaruman fiber: A brief report[J]. Polymers,2021,13(14):2264. doi: 10.3390/polym13142264
    [22] Chu J, Marsden A J, Young R J, et al. Graphene-based materials as strain sensors in glass fiber/epoxy model composites[J]. ACS applied materials & interfaces,2019,11(34):31338-31345. doi: 10.1021/acsami.9b09862
    [23] 冉敏, 贾立双, 程朝歌, 等. 变温拉曼研究炭纤维增强聚酰亚胺复合材料的界面微观力学行为(英文)[J]. 新型炭材料,2019,34(01):117-121.

    RAN Min, JIA Li-shuang, CHENG Chao-ge, et al. Variable temperature Raman scattering study on micromechanics of carbon fiber reinforced polyimide composites[J]. New Carbon Materials,2019,34(01):117-121.
    [24] Laurenzi S, Botti S, Rufoloni A, et al. Mapping the residual strain of carbon nanotubes in DWCNT/epoxy nanocomposites after tensile load using Raman microscopy[J]. Composites Communications,2021,21:100424. doi: 10.1016/j.coco.2020.100424
    [25] Alencar R S, Aguiar A L, Ferreira R S, et al. Raman resonance tuning of quaterthiophene in filled carbon nanotubes at high pressures[J]. Carbon,2021,173:163-173. doi: 10.1016/j.carbon.2020.10.083
    [26] Li X, Zhang R, Yu W, et al. Stretchable and highly sensitive graphene-on-polymer strain sensors[J]. Scientific reports,2012,2:870. doi: 10.1038/srep00870
    [27] 舒鹏. CF/改性环氧复合材料低温界面性能及液氧相容性研究[D]. 哈尔滨工业大学, 2013.

    SHU Peng. Cryogenic interfacial properties and liquid oxygen compatibility of CF/modified epoxy resin[D]. Harbin Institute of Technology, 2013.
  • 加载中
图(8)
计量
  • 文章访问数:  154
  • HTML全文浏览量:  110
  • PDF下载量:  71
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-03
  • 修回日期:  2022-10-25
  • 网络出版日期:  2023-10-07
  • 刊出日期:  2023-11-23

目录

    /

    返回文章
    返回