留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Encapsulation of sulfur inside micro-nano carbon/molybdenum carbide by in-situ chemical transformation for high-performance Li-S batteries

CHEN Xin-rong YU Xiao-fei HE Bin LI Wen-cui

陈新荣, 郁晓菲, 何斌, 李文翠. 原位化学转化法封装硫于分级微-纳炭/碳化钼用于高性能锂硫电池. 新型炭材料(中英文), 2023, 38(2): 337-346. doi: 10.1016/S1872-5805(23)60713-9
引用本文: 陈新荣, 郁晓菲, 何斌, 李文翠. 原位化学转化法封装硫于分级微-纳炭/碳化钼用于高性能锂硫电池. 新型炭材料(中英文), 2023, 38(2): 337-346. doi: 10.1016/S1872-5805(23)60713-9
CHEN Xin-rong, YU Xiao-fei, HE Bin, LI Wen-cui. Encapsulation of sulfur inside micro-nano carbon/molybdenum carbide by in-situ chemical transformation for high-performance Li-S batteries. New Carbon Mater., 2023, 38(2): 337-346. doi: 10.1016/S1872-5805(23)60713-9
Citation: CHEN Xin-rong, YU Xiao-fei, HE Bin, LI Wen-cui. Encapsulation of sulfur inside micro-nano carbon/molybdenum carbide by in-situ chemical transformation for high-performance Li-S batteries. New Carbon Mater., 2023, 38(2): 337-346. doi: 10.1016/S1872-5805(23)60713-9

原位化学转化法封装硫于分级微-纳炭/碳化钼用于高性能锂硫电池

doi: 10.1016/S1872-5805(23)60713-9
基金项目: 中国国家自然科学基金项目(21875028)
详细信息
    通讯作者:

    何 斌,博士、副研究员. E-mail:hebin71@dlut.edu.cn

    李文翠,博士、教授. E-mail:wencuili@dlut.edu.cn

  • 中图分类号: TB33

Encapsulation of sulfur inside micro-nano carbon/molybdenum carbide by in-situ chemical transformation for high-performance Li-S batteries

Funds: The authors are grateful to the financial support by National Natural Science Foundation of China (No. 21875028)
More Information
  • 摘要: 载体材料作为活性物质硫发生氧化还原反应的反应器,决定了硫正极的电化学性能。因此,通过对载体材料的设计,制备功能性载体材料,可以有效解决锂硫电池的穿梭效应和氧化还原动力学缓慢等问题。采用原位化学转化法将硫封装在空心薄壁C/Mo2C载体的~7 nm空腔中,制备了核壳结构S@C/Mo2C正极材料。纳米级别S@C/Mo2C一次粒子相互连接一起构成微米级二次颗粒,形成了连续的导电网络;纳米级硫核和连续导电网络可以促进锂离子和电子的传输。此外,微孔C/Mo2C壳可以通过物理限域/化学吸附作用减缓多硫化物向外扩散;同时C/Mo2C能有效催化多硫化物的转化,增强氧化还原动力学。基于这些优点,S@C/Mo2C正极材料在0.5 C电流密度时可逆比容量高达1210 mAh g−1,且具有较高的倍率性能,3 C时可逆比容量达到780 mAh g−1。此外,该正极材料表现出较好的循环稳定性,300次循环每圈比容量衰减率仅为0.127%。该工作对设计具有高倍率性能和高循环稳定性的硫正极材料具有一定的指导意义。
  • FIG. 2237.  FIG. 2237.

    FIG. 2237..  FIG. 2237.

    Figure  1.  Schematic diagrams of the synthetic procedure of S@C/Mo2C composite

    Figure  2.  (a) SEM image of the ZnS, (b) SEM image and (c) TEM image of ZnS@C/Mo2C composite, (d) SEM image and (e-g) TEM images of the S@C/Mo2C composite and corresponding EDS element mappings of (h) carbon, (i) molybdenum, and (j) sulfur

    Figure  3.  (a) XPS survey of S@C/Mo2C. (b) XPS spectrum of Mo 3d in S@C/Mo2C. (c) N2 sorption isotherms and (d) Pore size distributions of C/Mo2C and MC

    Figure  4.  (a) Digital photographs of LiPSs adsorption experiment. (b) Cyclic voltammograms of symmetric cells with 0.2 mol L−1 Li2S6 catholyte at 1 mV s−1. (c) Forward scan (from OCV to 2.8 V). (d) Backward scan (from OCV to 1.7 V) with different electrodes at 0.1 mV s−1 and (e, f) Tafel plots of the C/Mo2C and MC electrodes

    Figure  5.  (a) CV curves at 0.2 mV·s−1, (b) Discharge/charge voltage profiles at 0.2 C, (c) Rate capability at various rates. (d) EIS after 100 cycles and (e) Long-term cycle performance at 0.5 C of the S@C/Mo2C and S@MC electrodes

  • [1] Seh Z W, Sun Y, Zhang Q, et al. Designing high-energy lithium-sulfur batteries[J]. Chemical Society Reviews,2016,45(20):5605-5634. doi: 10.1039/C5CS00410A
    [2] Jeong Y C, Kim J H, Nam S, et al. Rational design of nanostructured functional interlayer/separator for advanced Li-S batteries[J]. Advanced Functional Materials,2018,28(38):1707411. doi: 10.1002/adfm.201707411
    [3] Song Y, Cai W, Kong L, et al. Rationalizing electrocatalysis of Li-S chemistry by mediator design: Progress and prospects[J]. Advanced Energy Materials,2020,10(11):1901075. doi: 10.1002/aenm.201901075
    [4] Lin Y, Huang S, Zhong L, et al. Organic liquid electrolytes in Li-S batteries: Actualities and perspectives[J]. Energy Storage Materials,2021,34:128-147. doi: 10.1016/j.ensm.2020.09.009
    [5] Chen K, Fang R, Lian Z, et al. An in-situ solidification strategy to block polysulfides in lithium-sulfur batteries[J]. Energy Storage Materials,2021,37:224-232. doi: 10.1016/j.ensm.2021.02.012
    [6] Li F, Liu Q, Hu J, et al. Recent advances in cathode materials for rechargeable lithium-sulfur batteries[J]. Nanoscale,2019,11(33):15418-15439. doi: 10.1039/C9NR04415A
    [7] Ye C, Jiao Y, Jin H, et al. 2D MoN-VN heterostructure to regulate polysulfides for highly efficient lithium-sulfur batteries[J]. Angewandte Chemie International Edition,2018,57(51):16703-16707. doi: 10.1002/anie.201810579
    [8] Yao W, Tian C, Yang C, et al. P-doped NiTe2 with Te-vacancies in lithium-sulfur batteries prevents shuttling and promotes polysulfide conversion[J]. Advanced Materials,2022,34(11):2106370. doi: 10.1002/adma.202106370
    [9] Shi H, Qin J, Lu P, et al. Interfacial engineering of bifunctional niobium (V)-based heterostructure nanosheet toward high efficiency lean-electrolyte lithium-sulfur full batteries[J]. Advanced Functional Materials,2021,31(28):2102314. doi: 10.1002/adfm.202102314
    [10] Yuan S, Guo Z, Wang L, et al. Leaf-like graphene-oxide-wrapped sulfur for high-performance lithium-sulfur battery[J]. Advanced Science,2015,2(8):1500071. doi: 10.1002/advs.201500071
    [11] Seh Z W, Li W, Cha J J, et al. Sulphur-TiO2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries[J]. Nature Communications,2013,4(1):1331. doi: 10.1038/ncomms2327
    [12] He B, Rao Z, Cheng Z, et al. Rationally design a sulfur cathode with solid‐phase conversion mechanism for high cycle-stable Li-S batteries[J]. Advanced Energy Materials,2021,11(14):2003690. doi: 10.1002/aenm.202003690
    [13] Ma F, Liang J, Wang T, et al. Efficient entrapment and catalytic conversion of lithium polysulfides on hollow metal oxide submicro-spheres as lithium-sulfur battery cathodes[J]. Nanoscale,2018,10(12):5634-5641. doi: 10.1039/C7NR09216D
    [14] Yan N, Yang X, Zhou W, et al. Fabrication of a nano-Li+-channel interlayer for high performance Li-S battery application[J]. RSC Advances,2015,5(33):26273-26280. doi: 10.1039/C5RA01269D
    [15] Yuan H, Huang J Q, Peng H J, et al. A review of functional binders in lithium-sulfur batteries[J]. Advanced Energy Materials,2018,8(31):1802107. doi: 10.1002/aenm.201802107
    [16] Boyjoo Y, Shi H, Olsson E, et al. Molecular-level design of pyrrhotite electrocatalyst decorated hierarchical porous carbon spheres as nanoreactors for lithium-sulfur batteries[J]. Advanced Energy Materials,2020,10(20):2000651. doi: 10.1002/aenm.202000651
    [17] Shao Q, Xu L, Guo D, et al. Atomic level design of single iron atom embedded mesoporous hollow carbon spheres as multi-effect nanoreactors for advanced lithium-sulfur batteries[J]. Journal of Materials Chemistry A,2020,8(45):23772-23783. doi: 10.1039/D0TA07010F
    [18] Du Z, Chen X, Hu W, et al. Cobalt in nitrogen-doped graphene as single-atom catalyst for high-sulfur content lithium-sulfur batteries[J]. Journal of the American Chemical Society,2019,141(9):3977-3985. doi: 10.1021/jacs.8b12973
    [19] Ma F, Zhang X, Sriniva K, et al. NbN nanodot decorated N-doped graphene as a multifunctional interlayer for high-performance lithium-sulfur batteries[J]. Journal of Materials Chemistry A,2022,10(15):8578-8590. doi: 10.1039/D2TA01364A
    [20] Xing F, Liu T, Yin Y, et al. Highly active hollow porous carbon spheres@graphite felt composite electrode for high power density vanadium flow batteries[J]. Advanced Functional Materials,2022,32(18):2111267. doi: 10.1002/adfm.202111267
    [21] Wang L, Li G R, Liu S, et al. Hollow molybdate microspheres as catalytic hosts for enhancing the electrochemical performance of sulfur cathode under high sulfur loading and lean electrolyte[J]. Advanced Functional Materials,2021,31(18):2010693. doi: 10.1002/adfm.202010693
    [22] Chen S, Luo J, Li N, et al. Multifunctional LDH/Co9S8 heterostructure nanocages as high-performance lithium-sulfur battery cathodes with ultralong lifespan[J]. Energy Storage Materials,2020,30:187-195. doi: 10.1016/j.ensm.2020.05.002
    [23] Chen T, Ma L, Cheng B, et al. Metallic and polar Co9S8 inlaid carbon hollow nanopolyhedra as efficient polysulfide mediator for lithium-sulfur batteries[J]. Nano Energy,2017,38:239-248. doi: 10.1016/j.nanoen.2017.05.064
    [24] Yao Y, Feng W, Chen M, et al. Boosting the electrochemical performance of Li-S batteries with a dual polysulfides confinement strategy[J]. Small,2018,14(42):1802516. doi: 10.1002/smll.201802516
    [25] Shao Q, Lu P, Xu L, et al. Rational design of MoS2 nanosheets decorated on mesoporous hollow carbon spheres as a dual-functional accelerator in sulfur cathode for advanced pouch-type Li-S batteries[J]. Journal of Energy Chemistry,2020,51:262-271. doi: 10.1016/j.jechem.2020.03.035
    [26] Wang Y, Zhang R, Chen J, et al. Enhancing catalytic activity of titanium oxide in lithium-sulfur batteries by band engineering[J]. Advanced Energy Materials,2019,9(24):1900953. doi: 10.1002/aenm.201900953
    [27] Du N, Zheng W, Li X, et al. Nanosheet-assembled NiS hollow structures with double shells and controlled shapes for high-performance supercapacitors[J]. Chemical Engineering Journal,2017,323:415-424. doi: 10.1016/j.cej.2017.04.127
    [28] Zhang L H, He B, Li W C, et al. Surface free energy-induced assembly to the synthesis of grid-like multicavity carbon spheres with high level in-cavity encapsulation for lithium-sulfur cathode[J]. Advanced Energy Materials,2017,7(22):1701518. doi: 10.1002/aenm.201701518
    [29] Pei F, Lin L, Ou D, et al. Self-supporting sulfur cathodes enabled by two-dimensional carbon yolk-shell nanosheets for high-energy-density lithium-sulfur batteries[J]. Nature Communications,2017,8(1):482. doi: 10.1038/s41467-017-00575-8
    [30] Li Z, Zhang J, Guan B, et al. A sulfur host based on titanium monoxide@carbon hollow spheres for advanced lithium-sulfur batteries[J]. Nature Communications,2016,7(1):13065. doi: 10.1038/ncomms13065
    [31] Yu X F, Li W C, Hu Y R, et al. Sculpturing solid polymer spheres into internal gridded hollow carbon spheres under controlled pyrolysis micro-environment[J]. Nano Research,2021,14(5):1565-1573. doi: 10.1007/s12274-021-3290-6
    [32] Wang Q, Liu H, Li R, et al. Clustered-microcapsule-shaped microporous carbon-coated sulfur composite synthesized via in situ oxidation[J]. ACS Applied Materials & Interfaces,2017,9(51):44512-44518.
    [33] Zhang L, Wu H B, Liu B, et al. Formation of porous SnO2 microboxes via selective leaching for highly reversible lithium storage[J]. Energy & Environmental Science,2014,7(3):1013-1017.
    [34] Yao W, Zheng W, Xu J, et al. ZnS-SnS@NC heterostructure as robust lithiophilicity and sulfiphilicity mediator toward high-rate and long-life lithium-sulfur batteries[J]. ACS Nano,2021,15(4):7114-7130. doi: 10.1021/acsnano.1c00270
    [35] Wang Q, Wang Z B, Li C, et al. High sulfur content microporous carbon coated sulfur composites synthesized via in situ oxidation of metal sulfide for high-performance Li/S batteries[J]. Journal of Materials Chemistry A,2017,5(13):6052-6059. doi: 10.1039/C6TA10163A
    [36] Yu X F, Li W C, He B, et al. Porous carbon/borocarbonitride hybrid with enhanced tap density as a polar host for ultralong life Lithium-Sulfur batteries[J]. Chemical Engineering Journal,2022,430:132987. doi: 10.1016/j.cej.2021.132987
    [37] Wang Q, Yang M, Wang Z B, et al. Functional differentiation of three pores for effective sulfur confinement in Li-S battery[J]. Small,2018,14(11):1703279. doi: 10.1002/smll.201703279
    [38] Cai J, Zhang Z, Yang S, et al. Self-conversion templated fabrication of sulfur encapsulated inside the N-doped hollow carbon sphere and 3D graphene frameworks for high-performance lithium-sulfur batteries[J]. Electrochimica Acta,2019,295:900-909. doi: 10.1016/j.electacta.2018.11.013
    [39] Chen Y Y, Zhang Y, Jiang W J, et al. Pomegranate-like N, P-doped Mo2C@C nanospheres as highly active electrocatalysts for alkaline hydrogen evolution[J]. ACS Nano,2016,10(9):8851-8860. doi: 10.1021/acsnano.6b04725
    [40] Chen G, Li Y, Zhong W, et al. MOFs-derived porous Mo2C-C nano-octahedrons enable high-performance lithium-sulfur batteries[J]. Energy Storage Materials,2020,25:547-554. doi: 10.1016/j.ensm.2019.09.028
    [41] Qian J, Xing Y, Yang Y, et al. Enhanced electrochemical kinetics with highly dispersed conductive and electrocatalytic mediators for lithium-sulfur batteries[J]. Advanced Materials,2021,33(25):2100810. doi: 10.1002/adma.202100810
    [42] He B, Li W C, Yang C, et al. Incorporating sulfur inside the pores of carbons for advanced lithium-sulfur batteries: An electrolysis approach[J]. ACS Nano,2016,10(1):1633-1639. doi: 10.1021/acsnano.5b07340
    [43] Xia J L, Yan D, Guo L P, et al. Hard carbon nanosheets with uniform ultramicropores and accessible functional groups showing high realistic capacity and superior rate performance for sodium-ion storage[J]. Advanced Materials,2020,32(21):2000447. doi: 10.1002/adma.202000447
    [44] Li W, Chen K, Xu Q, et al. Mo2C/C Hierarchical double-shelled hollow spheres as sulfur host for advanced Li-S batteries[J]. Angewandte Chemie International Edition,2021,60(39):21512-21520. doi: 10.1002/anie.202108343
    [45] Lin H, Yang L, Jiang X, et al. Electrocatalysis of polysulfide conversion by sulfur-deficient MoS2 nanoflakes for lithium-sulfur batteries[J]. Energy & Environmental Science,2017,10(6):1476-1486.
    [46] Xie Y, Cao J, Wang X, et al. MOF-derived bifunctional Co0.85Se nanoparticles embedded in N-doped carbon nanosheet arrays as efficient sulfur hosts for lithium-sulfur batteries[J]. Nano Letters,2021,21(20):8579-8586. doi: 10.1021/acs.nanolett.1c02037
    [47] Pu J, Gong W, Shen Z, et al. CoNiO2/Co4N heterostructure nanowires assisted polysulfide reaction kinetics for improved lithium-sulfur batteries[J]. Advanced Science,2022,9(4):2104375. doi: 10.1002/advs.202104375
    [48] Zhang H, Zhao W, Zou M, et al. 3D, mutually embedded MOF@carbon nanotube hybrid networks for high-performance lithium-sulfur batteries[J]. Advanced Energy Materials,2018,8(19):1800013. doi: 10.1002/aenm.201800013
    [49] Liu G, Zeng Q, Sui X, et al. Modulating the d-p orbital coupling of manganese chalcogenides for efficient polysulfides conversion in lithium-sulfur batteries[J]. Journal of Power Sources,2022,552:232244. doi: 10.1016/j.jpowsour.2022.232244
    [50] Lin Y, Tang W, Wu S, et al. Alleviating the self-discharge and enhancing the polysulphides conversion kinetics with LaCO3OH nanocrystals decorated hierarchical porous carbon[J]. Chemical Engineering Journal,2023,452:139091. doi: 10.1016/j.cej.2022.139091
    [51] Zhang X, Gu H, Shen C, et al. Catalytic boosting bidirectional polysulfide redox using Co0.85Se/C hollow structure for high-performance lithium-sulfur batteries[J]. ChemElectroChem,2022,9(4):e202101557.
  • 20220186-Supporting information.pdf
  • 加载中
图(6)
计量
  • 文章访问数:  314
  • HTML全文浏览量:  144
  • PDF下载量:  85
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-14
  • 修回日期:  2022-11-03
  • 网络出版日期:  2022-11-10
  • 刊出日期:  2023-04-07

目录

    /

    返回文章
    返回