留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Contribution of surface roughness and oxygen-containing groups to the interfacial shear strength of carbon fiber/epoxy resin composites

LIANG Yi-cai ZHANG Xing-hua WEI Xing-hai JING De-qi SU Wei-guo ZHANG Shou-chun

梁乙偲, 张兴华, 魏兴海, 经德齐, 苏维国, 张寿春. 表面粗糙度和含氧官能团对炭纤维/环氧树脂界面黏结的贡献. 新型炭材料(中英文), 2023, 38(6): 1116-1126. doi: 10.1016/S1872-5805(23)60720-6
引用本文: 梁乙偲, 张兴华, 魏兴海, 经德齐, 苏维国, 张寿春. 表面粗糙度和含氧官能团对炭纤维/环氧树脂界面黏结的贡献. 新型炭材料(中英文), 2023, 38(6): 1116-1126. doi: 10.1016/S1872-5805(23)60720-6
LIANG Yi-cai, ZHANG Xing-hua, WEI Xing-hai, JING De-qi, SU Wei-guo, ZHANG Shou-chun. Contribution of surface roughness and oxygen-containing groups to the interfacial shear strength of carbon fiber/epoxy resin composites. New Carbon Mater., 2023, 38(6): 1116-1126. doi: 10.1016/S1872-5805(23)60720-6
Citation: LIANG Yi-cai, ZHANG Xing-hua, WEI Xing-hai, JING De-qi, SU Wei-guo, ZHANG Shou-chun. Contribution of surface roughness and oxygen-containing groups to the interfacial shear strength of carbon fiber/epoxy resin composites. New Carbon Mater., 2023, 38(6): 1116-1126. doi: 10.1016/S1872-5805(23)60720-6

表面粗糙度和含氧官能团对炭纤维/环氧树脂界面黏结的贡献

doi: 10.1016/S1872-5805(23)60720-6
基金项目: 山西省重点研发计划(202003D111002);山西省科技重大专项计划(202101040201003);国家自然科学基金(51903249);中国科学院山西煤炭化学研究所创新基金项目(SCJC-XCL-2022-12)
详细信息
    通讯作者:

    张寿春,研究员. E-mail:zschun@sxicc.ac.cn

  • 中图分类号: TQ127.1+1

Contribution of surface roughness and oxygen-containing groups to the interfacial shear strength of carbon fiber/epoxy resin composites

Funds: This work was supported by the Key Research and Development Program of Shanxi Province (202003D111002), Major Science and Technology Project in Shanxi Province (202101040201003); the National Natural Science Foundation of China (51903249) and the Innovation Fund Project of Shanxi Institute of Coal Chemistry, Chinese Academy of Sciences (SCJC-XCL-2022-12)
More Information
  • 摘要: 炭纤维(CF)与基体之间的界面黏结对CF增强聚合物复合材料的性能至关重要。为了评估机械啮合和化学键合对炭纤维增强环氧树脂(EP)复合材料界面黏附性能的贡献,分离了炭纤维的表面粗糙度和含氧官能团以研究它们对界面黏附的影响。结果表明,氨水处理提高了表面粗糙度而不改变化学性能,而电化学处理在不改变表面粗糙度的情况下提高了化学性能。采用微滴法测试了CF/EP的界面剪切强度(IFSS),并通过线性拟合得到了IFSS与表面粗糙度和氧含量之间的函数关系。结果表明,在双官能和四官能环氧树脂体系中,化学键合对于增强界面黏附的贡献因子高于机械互锁。
  • FIG. 2783.  FIG. 2783.

    FIG. 2783..  FIG. 2783.

    Figure  1.  SEM images of CFs: (a) CF0, (b) A-CF1, (c) A-CF2, (d) A-CF3, (e) A-CF4, (f) A-CF5, (g) E-CF1, (h) E-CF2, (i) E-CF3 and (j) E-CF4

    Figure  2.  AFM images of CFs: (a) CF0, (b) A-CF1, (c) A-CF2, (d) A-CF3, (e) A-CF4 and (f) A-CF5

    Figure  3.  XPS wide spectra of the CFs

    Figure  4.  C1s XPS spectra of the CFs

    Figure  5.  The tensile strength of CFs after ammonia treatment

    Figure  6.  Variation of IFSS in bifunctional epoxy systems (a) with surface roughness and (b) with the O1s content on surface

    Figure  7.  Variation of IFSS in tetrafunctional epoxy systems (a) with the surface roughness and (b) with the O1s content on surface

    Table  1.   Average roughness (Ra) values of the CFs obtained from the AFM

    SampleCF0A-CF1A-CF2A-CF3A-CF4A-CF5
    Ra/nm10.212.213.214.317.222.4
    下载: 导出CSV

    Table  2.   Elemental content of the CFs surface

    SampleElement content/%
    CNOO/C
    CF088.892.458.669.74
    A-CF188.712.678.629.72
    A-CF290.391.977.648.45
    A-CF390.502.017.498.28
    A-CF489.262.488.269.25
    A-CF589.102.368.549.58
    E-CF187.013.199.8011.26
    E-CF285.932.7311.3413.20
    E-CF383.383.1513.4716.15
    E-CF481.682.8915.4318.89
    下载: 导出CSV

    Table  3.   Relative contents of functional groups on the surface of CFs

    SampleRelative content of functional groups (%)
    C―CC―OC=O―COO
    CF088.436.114.211.24
    A-CF188.296.173.701.84
    A-CF288.446.603.271.68
    A-CF390.046.242.101.62
    A-CF489.716.372.291.63
    A-CF589.216.352.941.51
    E-CF185.988.821.843.37
    E-CF283.9310.491.464.12
    E-CF381.9112.330.725.04
    E-CF476.7614.561.507.18
    下载: 导出CSV

    Table  4.   Dynamic contact angle and surface free energies of CFs

    SampleContact angle/(°)Surface energy/(mN/m)
    Deionized waterγ
    CF0 76.27±0.49 37.80±0.33
    A-CF1 75.60±0.50 38.20±0.31
    A-CF2 75.00±0.17 38.60±0.10
    A-CF3 73.77±0.67 39.40±0.41
    A-CF4 72.27±0.61 40.30±0.38
    A-CF5 70.40±0.53 41.50±0.33
    E-CF1 68.50±1.82 42.70±1.13
    E-CF2 64.10±0.61 45.30±0.39
    E-CF3 61.20±0.78 47.10±0.48
    E-CF4 56.83±0.15 49.80±0.10
    下载: 导出CSV
  • [1] Shin H K, Park M, Kim H Y, et al. An overview of new oxidation methods for polyacrylonitrile-based carbon fibers[J]. Carbon letters,2015,16(1):11-18. doi: 10.5714/CL.2015.16.1.011
    [2] Quan D, Farooq U, Zhao G et al. Recycled carbon fibre mats for interlayer toughening of carbon fibre/epoxy composites[J]. Materials & Design,2022,218:110671-110681. doi: 10.1016/J.MATDES.2022.110671
    [3] Navarro C A, Ma Y, Michael K H, et al. Catalytic, aerobic depolymerization of epoxy thermoset composites[J]. Green Chemistry,2021,23(17):6356-6360. doi: 10.1039/D1GC01970H
    [4] Kim K W, Kim D K, Kim B S, et al. Cure behaviors and mechanical properties of carbon fiber-reinforced nylon6/epoxy blended matrix composites[J]. Composites Part B:Engineering,2017,112:15-21. doi: 10.1016/j.compositesb.2016.12.009
    [5] Jiang J, Yao X, Xu C, et al. Influence of electrochemical oxidation of carbon fiber on the mechanical properties of carbon fiber/graphene oxide/epoxy composites[J]. Composites Part A:Applied Science and Manufacturing,2017,95:248-256. doi: 10.1016/j.compositesa.2017.02.004
    [6] Vickers P E, Watts J F, Perruchot C, et al. The surface chemistry and acid–base properties of a PAN-based carbon fibre[J]. Carbon,2000,38(5):675-689. doi: 10.1016/S0008-6223(99)00137-2
    [7] Jiao W W, Liu W B, Yang F, et al. Improving the interfacial property of carbon fiber/vinyl ester resin composite by grafting modification of sizing agent on carbon fiber surface[J]. Journal of Materials Science,2017,52:13812-13818. doi: 10.1007/s10853-017-1485-8
    [8] Vautard F, Ozcan S, Meyer H. Properties of thermo-chemically surface treated carbon fibers and of their epoxy and vinyl ester composites[J]. Composites Part A: Applied Science and Manufacturing,2012,43(7):1120-1133. doi: 10.1016/j.compositesa.2012.02.018
    [9] Mäder E, Grundke K, Jacobasch H J, et al. Surface, interphase and composite property relations in fibre-reinforced polymers[J]. Composites,1994,25(7):739-744. doi: 10.1016/0010-4361(94)90209-7
    [10] Pisanova E, Zhandarov S, Mäder E. How can adhesion be determined from micromechanical tests?[J]. Composites Part A:Applied Science and Manufacturing,2001,32(3-4):425-434. doi: 10.1016/S1359-835X(00)00055-5
    [11] Zhandarov S F, Mäder E, Yurkevich O R. Indirect estimation of fiber/polymer bond strength and interfacial friction from maximum load values recorded in the microbond and pull-out tests. Part I: local bond strength[J]. Journal of adhesion science and technology,2002,16(9):1171-1200. doi: 10.1163/156856102320256837
    [12] Zhandarov S, Mäder E. Characterization of fiber/matrix interface strength: Applicability of different tests, approaches and parameters[J]. Composites Science and Technology,2005,65(1):149-160. doi: 10.1016/j.compscitech.2004.07.003
    [13] Sharma M, Gao S, Mäder E, et al. Carbon fiber surfaces and composite interphases[J]. Composites Science and Technology,2014,102:35-50. doi: 10.1016/j.compscitech.2014.07.005
    [14] Song W, Gu A, Liang G, et al. Effect of the surface roughness on interfacial properties of carbon fibers reinforced epoxy resin composites[J]. Applied surface science,2011,257(9):4069-4074. doi: 10.1016/j.apsusc.2010.11.177
    [15] Lu C, Chen P, Yu Q, et al. Interfacial adhesion of plasma-treated carbon fiber/poly (phthalazinone ether sulfone ketone) composite[J]. Journal of applied polymer science,2007,106(3):1733-1741. doi: 10.1002/app.26840
    [16] Li Z, Wu S, Zhao Z, et al. Influence of surface properties on the interfacial adhesion in carbon fiber/epoxy composites[J]. Surface and interface analysis,2014,46(1):16-23. doi: 10.1002/sia.5340
    [17] Drzal L, Sugiura N, Hook D. The role of chemical bonding and surface topography in adhesion between carbon fibers and epoxy matrices[J]. Composite Interfaces,1996,4(5):337-354. doi: 10.1163/156855497X00073
    [18] SU Ya nan, JING De qi, ZHANG Xing hua, et al. Effect of surface functionalization on the surface and interfacial properties of thermoplastic-coated carbon fibers[J]. New Carbon Mater,2021,36(6):1169-1178. doi: 10.1016/S1872-5805(21)60049-5
    [19] XU Xiao tong, TIAN Xiao dong, LI Xiao, et al. The effect of the nitric acid heat treatment time on the electrochemical properties of NiCo2S4/carbon cloth composites as supercapacitor electrode materials[J]. New Carbon Materials,2020,35(3):244-252. doi: 10.19869/j.ncm.1007-8827.2020.03.001
    [20] Bismarck A, Kumru M E, Springer J. Influence of oxygen plasma treatment of PAN-based carbon fibers on their electrokinetic and wetting properties[J]. Journal of colloid and interface science,1999,210(1):60-72. doi: 10.1006/jcis.1998.5912
    [21] Li D, Neumann A. Equation of state for interfacial tensions of solid-liquid systems[J]. Advances in Colloid and Interface Science,1992,39:299-345. doi: 10.1016/0001-8686(92)80064-5
    [22] Kang S K, Lee D B, Choi N S. Fiber/epoxy interfacial shear strength measured by the microdroplet test[J]. Composites Science and Technology,2009,69(2):245-251. doi: 10.1016/j.compscitech.2008.10.016
    [23] Qian X, Chen L, Huang J, et al. Effect of carbon fiber surface chemistry on the interfacial properties of carbon fibers/epoxy resin composites[J]. Journal of Reinforced Plastics and Composites,2013,32(6):393-401. doi: 10.1177/0731684412468369
    [24] Moosburger Will J, Jäger J, Strauch J, et al. Interphase formation and fiber matrix adhesion in carbon fiber reinforced epoxy resin: Influence of carbon fiber surface chemistry[J]. Composite Interfaces,2017,24(7):691-710. doi: 10.1080/09276440.2017.1267513
    [25] Qian X, Zhang Y G, Wang X F, et al. Effect of carbon fiber surface functionality on the moisture absorption behavior of carbon fiber/epoxy resin composites[J]. Surface and Interface Analysis,2016,48(12):1271-1277. doi: 10.1002/sia.6031
    [26] Li N, Liu G, Wang Z, et al. Effect of surface treatment on surface characteristics of carbon fibers and interfacial bonding of epoxy resin composites[J]. Fibers and Polymers,2014,15(11):2395-2403. doi: 10.1007/s12221-014-2395-x
    [27] Severini F, Formaro L, Pegoraro M, et al. Chemical modification of carbon fiber surfaces[J]. Carbon,2002,40(5):735-741. doi: 10.1016/S0008-6223(01)00180-4
    [28] Bismarck A, Kumru M E, Springer J, et al. Surface properties of PAN-based carbon fibers tuned by anodic oxidation in different alkaline electrolyte systems[J]. Applied Surface Science,1999,143(1):45-55.
    [29] Yue Z R, Jiang W, Wang L, et al. Surface characterization of electrochemically oxidized carbon fibers[J]. Carbon,1999,37(11):1785-1796. doi: 10.1016/S0008-6223(99)00047-0
    [30] Meng L, Fan D, Zhang C, et al. The effect of oxidation treatment with supercritical water/hydrogen peroxide system on intersurface performance for polyacrylonitrile-based carbon fibers[J]. Applied Surface Science,2013,273:167-172. doi: 10.1016/j.apsusc.2013.02.007
    [31] Xie Y, Sherwood P M. X-ray photoelectron-spectroscopic studies of carbon fiber surfaces 11. Differences in the surface chemistry and bulk structure of different carbon fibers based on poly (acrylonitrile) and pitch and comparison with various graphite samples[J]. Chemistry of Materials,1990,2(3):293-299. doi: 10.1021/cm00009a020
    [32] Waldman D A, Zou Y L, Netravali A N. Ethylene/ammonia plasma polymer deposition for controlled adhesion of graphite fibers to PEEK[J]. Journal of adhesion science and technology,1995,9(11):1475-1503. doi: 10.1163/156856195X00149
    [33] Desimoni E, Casella G, Morone A, et al. XPS determination of oxygen‐containing functional groups on carbon‐fibre surfaces and the cleaning of these surfaces[J]. Surface and Interface Analysis,1990,15(10):627-634. doi: 10.1002/sia.740151011
    [34] Wang Y Q, Viswanathan H, Audi A A, et al. X-ray photoelectron spectroscopic studies of carbon fiber surfaces. 22. Comparison between surface treatment of untreated and previously surface-treated fibers[J]. Chemistry of materials,2000,12(4):1100-1107. doi: 10.1021/cm990734e
    [35] Li Jian. Effect of surface treatment on enhancing interfacial strength of carbon fiber/polyimide composites[J]. Journal of Thermoplastic Composite Materials,2022,35(5):708-719. doi: 10.1177/0892705720925141
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  274
  • HTML全文浏览量:  147
  • PDF下载量:  77
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-04
  • 录用日期:  2023-01-06
  • 修回日期:  2023-01-05
  • 网络出版日期:  2023-01-17
  • 刊出日期:  2023-11-23

目录

    /

    返回文章
    返回