留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A review of wearable supercapacitors fabricated from highly flexible conductive fiber materials

Nujud Badawi M Namrata Agrawal Syed Farooq Adil S Ramesh K Ramesh Shahid Bashir

Nujud Badawi M, Namrata Agrawal, Syed Farooq Adil, S Ramesh, K Ramesh, Shahid Bashir. 导电纤维材料在高柔性可穿戴超级电容器中的研究进展. 新型炭材料(中英文), 2023, 38(2): 211-229. doi: 10.1016/S1872-5805(23)60721-8
引用本文: Nujud Badawi M, Namrata Agrawal, Syed Farooq Adil, S Ramesh, K Ramesh, Shahid Bashir. 导电纤维材料在高柔性可穿戴超级电容器中的研究进展. 新型炭材料(中英文), 2023, 38(2): 211-229. doi: 10.1016/S1872-5805(23)60721-8
Nujud Badawi M, Namrata Agrawal, Syed Farooq Adil, S Ramesh, K Ramesh, Shahid Bashir. A review of wearable supercapacitors fabricated from highly flexible conductive fiber materials. New Carbon Mater., 2023, 38(2): 211-229. doi: 10.1016/S1872-5805(23)60721-8
Citation: Nujud Badawi M, Namrata Agrawal, Syed Farooq Adil, S Ramesh, K Ramesh, Shahid Bashir. A review of wearable supercapacitors fabricated from highly flexible conductive fiber materials. New Carbon Mater., 2023, 38(2): 211-229. doi: 10.1016/S1872-5805(23)60721-8

导电纤维材料在高柔性可穿戴超级电容器中的研究进展

doi: 10.1016/S1872-5805(23)60721-8
基金项目: Royal Society of Chemistry for through Universiti Malaya (IF062-2021)
详细信息
    通讯作者:

    K Ramesh. E-mail: rameshkasi@um.edu.my

  • 中图分类号: TQ127.1+1

A review of wearable supercapacitors fabricated from highly flexible conductive fiber materials

  • 摘要:

    采用纤维材料制备的超级电容器因柔韧性好、质量轻、能量密度高等优点,成为人们关注的电化学储能器件。目前,他们已广泛应用在信息传感、数据计算和通信等电子系统中。这些基于纤维材料的超级电容器(SCs)拥有比标准的平行平板电容器和电池具有更高的功率密度,因而再电子纺织品中大量使用。本文详细阐述了碳纳米管(CNTs)、石墨烯和聚(3,4-乙烯二氧噻吩):聚(苯乙烯磺酸)(PEDOT:PSS)的组成、纺丝和制备条件对可穿戴储能装置电化学性能的影响。

  • FIG. 2230.  FIG. 2230.

    FIG. 2230..  FIG. 2230.

    Figure  1.  Overall summary of the materials and their application

    Figure  2.  Stability tests for straight and bent positions of the solid-state device. Reproduced with permission[25]

    Figure  3.  (a) Schematic representation of the wet-spinning process, (b) Image of a PEDOT:PSS fiber around a Teflon rod, (c, d, e) SEM images of PEDOT: PSS fiber, wetspun fibers in a knot, and cross-section of PEDOT: PSS fiber respectively, (f, g) Images of a knot on the surface of a glove fabric. Reproduced with permission[27]

    Figure  4.  Diagrammatic representation of the (a) arc-discharge method of CNT formation, (b) a laser ablation technique, and (c) CVD technique[32]

    Figure  5.  A schematic representation of the electrode geometry and magnetic field configuration using typical images of the arc without/with an applied magnetic field. A distribution of the magnetic field that was numerically simulated is also visible (2-dimensional large-scale distribution of the magnetic field was simulated by David Meeker using FEMM4.0 software) Reproduced with permission[40]

    Figure  6.  (a) Schematic diagram of the graphene synthesis process from the bottom up and top down[60]. (b) AFM image of graphene, a graphene sheet suspended freely on a metallic scaffold of a micrometer’s size, and a SEM image of a sizable crystal of graphene[64]. (c) Graphite, GO and graphene sheets’ Raman spectra[65]

    Figure  7.  (a) A PEDOT/PSS polymer and PEDOT/CL-PSS particle. SEM images of the films: (b1) PEDOT/PSS, (b2) PEDOT/CL-PSS (1% DVB), (b3) PEDOT/CL-PSS (3% DVB), and (b4) PEDOT/CL-PSS (10% DVB). Reproduced with permissionn[70]

    Figure  8.  (a) Coagulation-based and LC-based wet spinning processes experimental setup. Reproduced with permission from[74]. (b) Schematic diagram of dry spun CNT fibre and a CNT forest created using the plasma enhanced chemical vapor deposition (PECVD) technique[75]

    Figure  9.  (a) Schematic structure of a flexible Sn || AC PIHC device[86]. (b) NFE was used as the electrolyte, anode, and cathode in a schematic illustration for NFPICs and GNFM, along with porous carbon, HRTEM images, and SAED patterns for the GNFM[87]

    Figure  10.  (a) Symmetric potassium-ion hybrid capacitors with flexible electrodes. Reproduced with permission[88], (b) Multidimensional host composite anode for flexible potassium-ion-based microcapacitors. Reproduced with permission[89]

    Figure  11.  Using self-assembled block copolymers to carbonize in a morphology-persistent way, an illustration of the synthesis of MS/SiOx@PCNs. Reproduced with permission from[90]

    Table  1.   Comparison of fabrication techniques and properties of fibers for use in wearable technology

    Fabrication techniqueFiber fabrication techniqueTensile strengthYoung’s modulusElectrical conductivityRefs.
    Arc dischargeWet spinning0.2323450 S cm−1[9]
    CVDWet spinning1.80 (SWCNT),1.40 (MWCNT)45 (SWCNT),35 (MWCNT)[10]
    CVDWet spinning1.00 ± 0.20120 ± 500.0290 ± 0.0003 S cm−1[11]
    CVDWet spinning0.21-0.250.0041-0.0050 S cm−1[12]
    CVDSolid-state0.308.3[13]
    CVDSolid-state0.85 untwisted,1.91 twisted275 untwisted,330 twisted170 S cm−1 untwisted,
    410 S cm−1 twisted
    [14]
    CVDSolid-state0.50 ± 0.108 ± 1500 S cm−1[15]
    CVDSolid-state~0.19[12]
    CVDSolid-state0.55-0.809-15[16]
    CVDSolid-state0.11800 S cm−1[17]
    Note: SWCNT-single walled carbon nanotube, MWCNT-multiwalled carbon nanotube
    下载: 导出CSV
  • [1] Gulzar U, Goriparti S, Miele E, et al. Next-generation textiles: from embedded supercapacitors to lithium-ion batteries[J]. Journal of Materials Chemistry A,2016,4(43):16771-16800. doi: 10.1039/C6TA06437J
    [2] Xu J, Li X, Li X, et al. Free-standing cotton-derived carbon microfiber@nickel-aluminum layered double hydroxides composite and its excellent capacitive performance[J]. Journal of Alloys and Compounds,2019,787:27-35. doi: 10.1016/j.jallcom.2019.01.270
    [3] Muzaffar A, Ahamed M B, Deshmukh K, et al. A review on recent advances in hybrid supercapacitors: design, fabrication and applications[J]. Renewable and Sustainable Energy Reviews,2019,101:123-145. doi: 10.1016/j.rser.2018.10.026
    [4] Gielen D, Boshell F, Saygin D, et al. The role of renewable energy in the global energy transformation[J]. Energy Strategy Reviews,2019,24:38-50. doi: 10.1016/j.esr.2019.01.006
    [5] Lin X, Wu M, Zhang L, et al. Superior stretchable conductors by electroless plating of copper on knitted fabrics[J]. ACS Applied Electronic Materials,2019,1:397-406. doi: 10.1021/acsaelm.8b00115
    [6] Riaz A, Sarker M R, Saad M H M, et al. Review on comparison of different energy storage technologies used in micro-energy harvesting, WSNs, low-cost microelectronic devices: Challenges and recommendations[J]. Sensors,2021,21:5041. doi: 10.3390/s21155041
    [7] Yong S, Owen J R, Tudor M J, et al. Fabric based supercapacitor[J]. Journal of Physics:Conference Series,2013,476(1):1742-6596.
    [8] Sundriyal, P, Bhattacharya S. Textile-based supercapacitors for flexible and wearable electronic applications[J]. Scientific Reports,2020,10:13259. doi: 10.1038/s41598-020-70182-z
    [9] Lu Z, Chao Y, Ge Y, et al. High-performance hybrid carbon nanotube fibers for wearable energy storage[J]. Nanoscale,2017,9(16):5063-5071. doi: 10.1039/C7NR00408G
    [10] Miaudet P, Badaire S, Maugey M, et al. Hot drawing of single and multiwall carbon nanotube fibers for high toughness and alignment[J]. Nano Letters,2005,5(11):2212-2215. doi: 10.1021/nl051419w
    [11] Behabtu N, Young C C, Tsentalovich D E, et al. Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity[J]. Science,2013,339(6116):182-186. doi: 10.1126/science.1228061
    [12] Bucossi A R, Cress C D, Schauerman C M, et al. Enhanced electrical conductivity in extruded single-wall carbon nanotube wires from modified coagulation parameters and mechanical processing[J]. ACS Applied Materials and Interfaces,2015,7(49):27299-27305. doi: 10.1021/acsami.5b08668
    [13] Zhang X, Jiang K, Feng C, Liu, et al. Spinning and processing continuous yarns from 4-inch wafer scale super-aligned carbon nanotube arrays[J]. Advanced Energy Materials,2006,18(12):1505-1510.
    [14] Zhang X, Li Q, Tu Y, et al. Strong carbon-nanotube fibers spun from long carbon-nanotube arrays[J]. Small,2007,3(2):244-248. doi: 10.1002/smll.200600368
    [15] Zhang S, Zhu L, Minus M L, et al. Solid-state spun fibers and yarns from 1-mm long carbon nanotube forests synthesized by water-assisted chemical vapor deposition[J]. Journal of Materials Science,2008,43(13):4356-4362. doi: 10.1007/s10853-008-2558-5
    [16] Ma W, Liu L, Yang R, et al. Monitoring a micromechanical process in macroscale carbon nanotube films and fibers[J]. Adv. Energy Mater,2009,21(5):603-608.
    [17] Guo F, Li C, Wei J, et al. Fabrication of highly conductive carbon nanotube fibers for electrical application[J]. Materials Research Express,2015,2(9):2053-1591.
    [18] Liu L, Yu Y, Yan C, et al. Wearable energy-dense and power-dense supercapacitor yarns enabled by scalable graphene–metallic textile composite electrodes[J]. Nature Communications,2015,6(1):1-9.
    [19] Zhou Y, Wang X, Acauan L, et al. Ultrahigh-areal-capacitance flexible supercapacitor electrodes enabled by conformal P3MT on horizontally aligned carbon-nanotube arrays[J]. Advanced Energy Materials,2019,31(30):1901-916.
    [20] Wang K, Zhao P, Zhou X, et al. Flexible supercapacitors based on cloth-supported electrodes of conducting polymer nanowire array/SWCNT composites[J]. Journal of Materials Chemistry,2011,21(41):16373-16378. doi: 10.1039/c1jm13722k
    [21] Cheng M, Meng Y N, Wein Zn X. Conducting polymer nanostructures and their derivatives for flexible supercapacitors[J]. Israel Journal of Chemistry,2018,58(12):1299-1314. doi: 10.1002/ijch.201800077
    [22] Wang Z, Wang H, Ji S, et al. Design and synthesis of tremella-like Ni–Co–S flakes on co-coated cotton textile as high-performance electrode for flexible supercapacitor[J]. Journal of Alloys and Compounds,2020,8(14):1259-1267.
    [23] Liu L, Yu Y, Yan C, et al. Wearable energy-dense and power-dense supercapacitor yarns enabled by scalable graphene-metallic textile composite electrodes[J]. Nature Communications,2015,6:10-1038.
    [24] Zhang P, Zhang H, Yan C, et al. Highly conductive templated-graphene fabrics for lightweight, flexible and foldable supercapacitors[J]. Materials Research Express,2017,4(7):075-602.
    [25] Garcia Torres J, Crean C. Ternary composite solid-state flexible supercapacitor based on nanocarbons/manganese dioxide/PEDOT: PSS fibres[J]. Materials and Design,2018,155:194-202. doi: 10.1016/j.matdes.2018.05.070
    [26] Liu G, Chen X, Liu J, et al. Fabrication of PEDOT: PSS/rGO fibers with high flexibility and electrochemical performance for supercapacitors[J]. Electrochimica Acta,2021,365:3875-3883.
    [27] Yuan D, Li B, Cheng J, et al. Twisted yarns for fiber-shaped supercapacitors based on wetspun PEDOT: PSS fibers from aqueous coagulation[J]. Journal of Materials Chemistry A,2016,4(30):11616-11624. doi: 10.1039/C6TA04081K
    [28] Iijima S. Helical microtubules of graphitic carbon[J]. Nature,1991,354(6348):56-58. doi: 10.1038/354056a0
    [29] Foroughi J, Spinks G M, Aziz S, et al. Knitted carbon-nanotube-sheath/spandex-core elastomeric yarns for artificial muscles and strain sensing[J]. ACS Nano,2016,10(10):9129-9135. doi: 10.1021/acsnano.6b04125
    [30] Karimi M, Solati N, Amiri M, et al. Carbon nanotubes part I: Preparation of a novel and versatile drug-delivery vehicle[J]. Expert Opinion on Drug Delivery. Expert Opinion on Drug Delivery,2015,12(7):1071-1087. doi: 10.1517/17425247.2015.1003806
    [31] Kumar M, Ando Y. Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production[J]. Nanosci. Nanotechnol,2010,10:3739-3758.
    [32] Journet C, Bernier P. Production of carbon nanotubes[J]. Applied physics A: Materials science and processing,1998,67(1):1-9. doi: 10.1007/s003390050731
    [33] Ebbesen T, Ajayan P. Large-scale synthesis of carbon nanotubes[J]. Nature,1992,358:220-222. doi: 10.1038/358220a0
    [34] Shimotani K, Anazawa K, Watanabe H, et al. New synthesis of multi-walled carbon nanotubes using an arc discharge technique under organic molecular atmospheres[J]. Applied Physics A,2001,73:451-454. doi: 10.1007/s003390100821
    [35] Parkansky N, Boxman R, Alterkop B, et al. Single-pulse arc production of carbon nanotubes in ambient air[J]. Journal of Physics D: Applied Physics,2004,37:27-15.
    [36] Jung S H, Kim M R, Jeong S H, et al. High-yield synthesis of multi-walled carbon nanotubes by arc discharge in liquid nitrogen[J]. Applied Physics A,2003,76(2):285-286. doi: 10.1007/s00339-002-1718-8
    [37] Sharma R, Sharma A K, Sharma V. Synthesis of carbon nanotubes by arc-discharge and chemical vapor deposition method with analysis of its morphology, dispersion and functionalization characteristics[J]. Cogent Engineering,2015,2(1):109-4017.
    [38] Ando Y, Zhao X, Sugai T, et al. Growing carbon nanotubes[J]. Materials Today,2004,7:22-29.
    [39] Shi Z, Lian Y, Liao F, et al. Purification of single-wall carbon nanotube[J]. Solid State Communications,1999,112(1):35-37. doi: 10.1016/S0038-1098(99)00278-1
    [40] Volotskova O, Fagan J A, Huh J Y, et al. Tailored distribution of single-wall carbon nanotubes from Arc plasma synthesis using magnetic fields[J]. ACS Nano,2010,4(9):5187-5192. doi: 10.1021/nn101279r
    [41] Pillai S K, Augustyn W G, Rossou M H, et al. The effect of calcination on multi-walled carbon nanotubes produced by Dc-Arc discharge[J]. J. Nanoscience and Nanotechnology,2008,8:3539-3544. doi: 10.1166/jnn.2008.115
    [42] Mwafy E A, Mostafa A M. Multi walled carbon nanotube decorated cadmium oxide nanoparticles via pulsed laser ablation in liquid media[J]. Optics and Laser Technology,2019,111:249-254. doi: 10.1016/j.optlastec.2018.09.055
    [43] Ismail R A, Mohsin M H, Ali A K, et al. Preparation and characterization of carbon nanotubes by pulsed laser ablation in water for optoelectronic application[J]. Physica E:Low-Dimensional Systems and Nanostructures,2020,119:633-022.
    [44] Guo T, Nikolaev P, Thess A, et al. Catalytic growth of single-walled nanotubes by laser vaporization[J]. Chemical Physics Letters,1995,243:49-54. doi: 10.1016/0009-2614(95)00825-O
    [45] Wang Y, Zhang Z, Liu H, et al. The effect of catalyst concentration on the synthesis of single-wall carbon nanotubes[J]. Spectrochimica Acta-Part A: Molecular and Biomolecular Spectroscopy,2002,58(10):2089-2095. doi: 10.1016/S1386-1425(01)00691-6
    [46] Karbhari V M, Love C T. Processing of nanotube-based nanocomposites[J]. Advances in Polymer Nanocomposites,2012,21:9381-9385.
    [47] Golnabi H. Carbon nanotube research developments in terms of published papers and patents, synthesis and production. synthesis and production[J]. Scientia Iranica,2012,19(6):2012-2022. doi: 10.1016/j.scient.2012.10.036
    [48] Ikegami T, Nakanishi F, Uchiyama M, et al. Optical measurement in carbon nanotubes formation by pulsed laser ablation[J]. Thin Solid Films,2004,457:7-11. doi: 10.1016/j.tsf.2003.12.033
    [49] Steiner S A, Baumann T F, Bayer B C, et al. Nanoscale zirconia as a nonmetallic catalyst for graphitization of carbon and growth of single- and multiwall carbon nanotubes[J]. Journal of the American Chemical Society,2009,131(34):12144-12154. doi: 10.1021/ja902913r
    [50] Mwafy E A. Eco-friendly approach for the synthesis of MWCNTs from waste tires via chemical vapor deposition[J]. Environmental Nanotechnology, Monitoring & Management,2020,14:100342.
    [51] Morançais A, Caussat B, Kihn Y, et al. A parametric study of the large scale production of multi-walled carbon nanotubes by fluidized bed catalytic chemical vapor deposition[J]. Carbon,2007,45(3):624-635. doi: 10.1016/j.carbon.2006.10.009
    [52] Liu H, Takagi D, Ohno H, et al. Growth of single-walled carbon nanotubes from ceramic particles by alcohol chemical vapor deposition[J]. Applied Physics Express,2008,1(1):1143.
    [53] Zhang K, Li T, Ling L, et al. Facile synthesis of high density carbon nanotube array by a deposition-growth-densification process[J]. Carbon,2017,114:435-440. doi: 10.1016/j.carbon.2016.12.047
    [54] Das R, Shahnavaz Z, Ali M E, et al. Can we optimize arc discharge and laser ablation for well-controlled carbon nanotube synthesis?[J]. Nanoscale Research Letters,2016,11(1):1186.
    [55] Whitener K E, Sheehan P E. Graphene synthesis[J]. Diamond and Related Materials,2014,46:25-34. doi: 10.1016/j.diamond.2014.04.006
    [56] Edwards R, Karl S Coleman. Graphene synthesis: Relationship to applications[J]. Nanoscale,2013,5:38-51. doi: 10.1039/C2NR32629A
    [57] Smith A T, LaChance A M, Zeng S, et al. Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites[J]. Nano Materials Science,2019,1(1):31-47. doi: 10.1016/j.nanoms.2019.02.004
    [58] Novoselov K S, Geim A K, Morozov S v, et al. Electric field in atomically thin carbon films[J]. Science,2004,306(5696):666-669. doi: 10.1126/science.1102896
    [59] Dato A, Radmilovic V, Lee Z, et al. Substrate-free gas-phase synthesis of graphene sheets[J]. Nano Letters,2008,8(7):2012-2016. doi: 10.1021/nl8011566
    [60] Shams S S, Zhang R, Zhu J. Graphene synthesis[J]. A review. materials science-poland,2015,33(3):566-578. doi: 10.1515/msp-2015-0079
    [61] Verdejo R, Bernal M, L R, et al. Graphene filled polymer nanocomposites[J]. Journal of Materials Chemistry,2011,21:3301-3310. doi: 10.1039/C0JM02708A
    [62] Ikram R, Jan B M, Ahmad W. An overview of industrial scalable production of graphene oxide and analytical approaches for synthesis and characterization[J]. Journal of Materials Research and Technology,2020,9(5):11587-11610. doi: 10.1016/j.jmrt.2020.08.050
    [63] Jayasena B, Subbiah S. A novel mechanical cleavage method for synthesizing few-layer graphenes[J]. Nanoscale Research Letters,2011,6(1):1-7.
    [64] Krishnamoorthy K, Kim G S, Kim J S. Graphene nanosheets: Ultrasound assisted synthesis and characterization[J]. Ultrasonics Sonochemistry,2013,20:644-649. doi: 10.1016/j.ultsonch.2012.09.007
    [65] Geim A K, Novoselov K S. The rise of graphene nanoscience and technology[J]. Nature Publishing Group,2009,21:11-19.
    [66] Chen D, Feng H, Li J. Graphene oxide: Preparation, functionalization, and electrochemical applications[J]. Chemical Reviews,2012,112(11):6027-6053. doi: 10.1021/cr300115g
    [67] Krishnamoorthy K, Veerapandian M, Yun K, et al. The chemical and structural analysis of graphene oxide with different degrees of oxidation[J]. Carbon,2013,53:38-49. doi: 10.1016/j.carbon.2012.10.013
    [68] Horii T, Hikawa H, Katsunuma M, et al. Synthesis of highly conductive PEDOT: PSS and correlation with hierarchical structure[J]. Polymer,2018,140:33-38. doi: 10.1016/j.polymer.2018.02.034
    [69] Sakunpongpitiporn P, Phasuksom K, Paradee N, et al. Facile synthesis of highly conductive PEDOT: PSS: Via surfactant templates[J]. RSC Advances,2019,9(11):6363-6378. doi: 10.1039/C8RA08801B
    [70] Muro K, Watanabe M, Tamai T, et al. PEDOT/PSS nanoparticles: Synthesis and properties[J]. RSC Advances,2016,6(90):87147-87152. doi: 10.1039/C6RA16829A
    [71] Ma W, Chen S, Yang S, et al. Bottom-up fabrication of activated carbon fiber for all-solid-state supercapacitor with excellent electrochemical performance[J]. ACS Applied Materials,2016,8:14622-14627. doi: 10.1021/acsami.6b04026
    [72] Yao F, Pham D T, Lee Y. H. Carbon-based materials for lithium-ion batteries, electrochemical capacitors, and their hybrid devices[J]. ChemSusChem,2015,8:2284-2311. doi: 10.1002/cssc.201403490
    [73] Jha N, Ramesh P, Bekyarova E, et al. High energy density supercapacitor based on a hybrid carbon nanotube–reduced graphite oxide architecture[J]. Advanced Energy Materials,2012,2:438-444. doi: 10.1002/aenm.201100697
    [74] Sun, G, Wang, X, Chen, P. Microfiber devices based on carbon materials[J]. Materials Today,2015,18(4):215-226. doi: 10.1016/j.mattod.2014.12.001
    [75] Ryu S W, Hwang J W, Hong S H. Synthesis and characterization of vertically aligned carbon nanotube forest for solid state fiber spinning[J]. Journal of Nanoscience and Nanotechnology,2012,12(7):5653-5657. doi: 10.1166/jnn.2012.6339
    [76] Lu Z, Raad R, Safaei F, Xi J, et al. Carbon nanotube based fiber supercapacitor as wearable energy storage[J]. Frontiers in Materials,2019,6:3389.
    [77] Xu Jie, Dou Shuming, Cui Xiaoya, et al. Potassium-based electrochemical energy storage devices: Development status and future prospect[J]. Energy Storage Materials,2021,34:85-106. doi: 10.1016/j.ensm.2020.09.001
    [78] Xu Y, Yuan T, Zhao Y, et al. Constructing multichannel carbon fibers as freestanding anodes for potassium-ion battery with high capacity and long cycle life[J]. Advanced Materials Interfaces,2020,7(3):7350.
    [79] Yang W, Zhou J, Wang S, et al. Freestanding film made by necklace-like N-doped hollow carbon with hierarchical pores for high-performance potassium-ion storage[J]. Energy & Environmental Science,2019,12(5):1605-1612.
    [80] Yu heng Lu, You chen Tang, Ke hanTang, et al. Controllable fabrication of superhierarchical carbon nanonetworks from 2D molecular brushes and their use in electrodes of flexible supercapacitors[J]. New Carbon Materials,2022,37(5):978-987. doi: 10.1016/S1872-5805(22)60641-3
    [81] Li X, Zhuang C, Xu J, et al. Rational construction of K0.5V2O5nanobelts/CNTs flexible cathode for multi-functional potassium-ion batteries[J]. Nanoscale,2021,13(17):8199-8209. doi: 10.1039/D1NR00993A
    [82] Zeng C, Xie F X, Yang X F, et al. Confined transformation derived ultrathin titanate nanosheets/graphene films for excellent Na/K ion storage[J]. Wiley-VCH,2022,130(28):8540-8544.
    [83] Qiu W, Xiao H, Li Y, et al. Nitrogen and phosphorus codoped vertical graphene/carbon cloth as a binder-free anode for flexible advanced potassium ion full batteries[J]. Small,2019,15(23):31-34.
    [84] Han J, Zhu K, Liu P, et al. N-doped CoSb@C nanofibers as a self-supporting anode for high-performance K-ion and Na-ion batteries[J]. Journal of Materials Chemistry A,2019,7(44):25268-25273. doi: 10.1039/C9TA09643D
    [85] Peng S, Wang L, Zhu Z, et al. Electrochemical performance of reduced graphene oxide/carbon nanotube hybrid papers as binder-free anodes for potassium-ion batteries[J]. Journal of Physics and Chemistry of Solids,2020,138:109296. doi: 10.1016/j.jpcs.2019.109296
    [86] Lang J, Li J, Ou X, et al. A flexible potassium-ion hybrid capacitor with superior rate performance and long cycling life[J]. ACS Applied Materials and Interfaces,2020,12(2):2424-2431. doi: 10.1021/acsami.9b17635
    [87] Cao B, Liu H, Zhang P, et al. Flexible MXene framework as a fast electron/potassium-ion dual-function conductor boosting stable potassium storage in graphite electrodes[J]. Advanced Functional Materials,2021,31(32):2102126. doi: 10.1002/adfm.202102126
    [88] Wang D, Wang P F, Lu B R, et al. Porous carbon tubes constructing freestanding flexible electrodes for symmetric potassium-ion hybrid capacitors[J]. ACS Applied Energy Materials,2021,4(12):13593-13604. doi: 10.1021/acsaem.1c02211
    [89] Bai R J, Zhang M X, Zhang X, et al. A multidimensional topotactic host composite anode toward transparent flexible potassium-ion microcapacitors[J]. ACS Applied Materials Interfaces,2021,14(1):1478-1488.
    [90] Liu S, Huang J, Tang Y, et al. Controllable preparation and functionalization strategies of novel polymer-based porous carbon materials[J]. Acta Polym. Sinica,2021,52(7):679-686.
    [91] Huang J, Chen Y, Leng K, et al. Morphology-persistent carbonization of self-assembled block copolymers for multifunctional coupled two-dimensional porous carbon hybrids[J]. Chemistry of Materials,2020,32(20):8971-8980. doi: 10.1021/acs.chemmater.0c03136
    [92] Shi C, Huang J, Tang Y, et al. A hierarchical porous carbon aerogel embedded with small-sized TiO2 nanoparticles for high-performance Li–S batteries[J]. Carbon,2022,202:59-65.
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  741
  • HTML全文浏览量:  306
  • PDF下载量:  177
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-01
  • 录用日期:  2022-12-31
  • 修回日期:  2022-12-31
  • 网络出版日期:  2023-03-03
  • 刊出日期:  2023-04-07

目录

    /

    返回文章
    返回