留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Synthesis of Co―N―C catalysts from a glucose hydrochar and their efficient hydrogenation of nitrobenzene

YANG Yu BU Yu LONG Xing-lin ZHOU Zhi-kang WANG Jing CAI Jin-jun

杨雨, 卜钰, 龙兴霖, 周志康, 王静, 蔡进军. 葡萄糖基水热炭构建Co―N―C催化剂及其硝基苯催化加氢反应性能. 新型炭材料(中英文), 2023, 38(3): 555-565. doi: 10.1016/S1872-5805(23)60723-1
引用本文: 杨雨, 卜钰, 龙兴霖, 周志康, 王静, 蔡进军. 葡萄糖基水热炭构建Co―N―C催化剂及其硝基苯催化加氢反应性能. 新型炭材料(中英文), 2023, 38(3): 555-565. doi: 10.1016/S1872-5805(23)60723-1
YANG Yu, BU Yu, LONG Xing-lin, ZHOU Zhi-kang, WANG Jing, CAI Jin-jun. Synthesis of Co―N―C catalysts from a glucose hydrochar and their efficient hydrogenation of nitrobenzene. New Carbon Mater., 2023, 38(3): 555-565. doi: 10.1016/S1872-5805(23)60723-1
Citation: YANG Yu, BU Yu, LONG Xing-lin, ZHOU Zhi-kang, WANG Jing, CAI Jin-jun. Synthesis of Co―N―C catalysts from a glucose hydrochar and their efficient hydrogenation of nitrobenzene. New Carbon Mater., 2023, 38(3): 555-565. doi: 10.1016/S1872-5805(23)60723-1

葡萄糖基水热炭构建Co―N―C催化剂及其硝基苯催化加氢反应性能

doi: 10.1016/S1872-5805(23)60723-1
基金项目: 国家自然科学基金(21506184);湖南省教育厅优秀青年项目(21B0098);湘潭市科技计划指导项目(CG-ZDJH202120);湘潭大学大学生创新训练计划
详细信息
    通讯作者:

    蔡进军,副教授. E-mail:caijj@xtu.edu.cn

  • 中图分类号: X712

Synthesis of Co―N―C catalysts from a glucose hydrochar and their efficient hydrogenation of nitrobenzene

Funds: National Natural Science Foundation of China (21506184), Education Bureau of Hunan Province (21B0098), Project of Guiding Technology of Xiangtan City (CG-ZDJH202120) and Undergraduate Innovation and Entrepreneurship Training Project of Xiangtan University
More Information
  • 摘要: 硝基苯选择性加氢反应是生产苯胺的重要方法,其关键在于开发一种具有高效选择性且低成本的绿色催化剂。本文基于葡萄糖水热炭化得到水热炭前驱体,结合尿素和硝酸钴一步高温热解制备了一种高度分散的富含Co纳米颗粒的氮掺杂多孔炭材料,将其作为催化剂用于硝基苯加氢反应。详细研究了热解温度对催化剂结构和催化活性的影响,证实了催化活性主要受催化剂的比表面积、Co掺杂量及其Co-Nx配位效应的影响。结果表明,将含10%Co源制备的前驱体800 °C热解得到的催化剂(Co@NCG-800)表现出优异的硝基苯催化加氢性能,在以异丙醇为溶剂、100 °C和1 MPa氢压下反应2.5 h时可实现硝基苯的转化,苯胺选择性高达99%。催化剂循环使用6次后的硝基苯转化率和苯胺选择性几乎保持不变。优异的循环稳定性能可归因于多孔炭材料中的氮元素和Co纳米颗粒的强相互作用,同时磁性Co纳米颗粒使得催化剂具有较好的分离特性和重复使用性。
  • FIG. 2367.  FIG. 2367.

    FIG. 2367..  FIG. 2367.

    Figure  1.  Schematic diagram for the production of Co-N-C catalysts

    Figure  2.  SEM images for different catalysts: (a) G-HTC, (b) 10%Co@NCG-700, (c) 10%Co@NCG-800 and (d) 10%Co@NCG-900

    Figure  3.  Typical TEM images for 10%Co@NCG-800 under varied magnifications

    Figure  4.  (a, c) N2 isotherms and (b, d) PSDs, and isotherms in Fig. 4a were separately shifted up by 30 cm3/g for shake of clarity

    Figure  5.  XRD patterns for the series of catalysts

    Figure  6.  XPS spectra of 10%Co@NCG-800: (a) survey curve, and high resolution XPS: (b) C1s, (c) N1s and (d) Co2p

    Figure  7.  (a) NB conversion on catalysts as pyrolyzed at 800 °C, and the effects of different reaction parameters on activity over 10%Co@NCG-800 catalyst: (b) temperature, (c) time and (d) H2 pressure

    Figure  8.  (a) The reusability of 10%Co@NCG-800 and (b) XRD patterns for the fresh and used catalysts

    Table  1.   Porous parameters for these catalysts obtained from different conditions

    Catalysts[a]SBET
    (m2/g)
    [b]Vt
    (cm3/g)
    [c]Vmeso
    (cm3/g)
    [d]Dave
    (nm)
    NCG-8002040.160.133.19
    10%Co@NCG-600420.080.077.24
    10%Co@NCG-7001700.140.113.42
    10%Co@NCG-8002730.230.163.30
    10%Co@NCG-9001960.190.143.92
    5%Co@NCG-8002940.350.264.75
    15%Co@NCG-8002270.300.245.23
    Note: [a] Surface areas;
    [b] Total pore volumes;
    [c] Mesopore volumes for pores larger than 1.7 nm;
    [d] Average pore sizes determined by 4 V/A method.
    下载: 导出CSV

    Table  2.   NB hydrogenation over catalysts under conditions of 120 °C and 1 MPa H2 with reaction time up to 3 h

    EntryCatalystsConversion (%)Selectivity
    (%)
    0Blank00
    1G-HTC00
    2NCG-80011.0>99
    310%Co@NCG-60086.0>99
    410%Co@NCG-70095.4>99
    510%Co@NCG-800100>99
    610%Co@NCG-90093.7>99
    下载: 导出CSV
  • [1] Qiao C, Jia W, Zhong Q, et al. MOF-derived Cu-nanoparticle embedded in porous carbon for the efficient hydrogenation of nitroaromatic compounds[J]. Catalysis Letters,2020,150(12):3394-3401. doi: 10.1007/s10562-020-03244-6
    [2] Xu Y, Shan W, Liang X, et al. Cobalt nano-particles encapsulated in nitrogen-doped carbon shells: Efficient and stable catalyst for nitrobenzene reduction[J]. Industrial & Engineering Chemistry Research,2020,59(10):4367-4376.
    [3] Wang D, Wei J, Wang J, et al. MOFs carbonization: In-situ encapsulation of Co-species into N-doped carbons as highly efficient catalysts for nitrobenzene hydrogenation[J]. Diamond and Related Materials,2022,121:108748. doi: 10.1016/j.diamond.2021.108748
    [4] Song T, Ren P, Duan Y, et al. Cobalt nano composites on N-doped hierarchical porous carbon for highly selective formation of anilines and imines from nitroarenes[J]. Green Chemistry,2018,20(20):4629-4637. doi: 10.1039/C8GC01374H
    [5] Yuan M, Long Y, Yang J, et al. Biomass sucrose-derived cobalt@nitrogen-doped carbon for catalytic transfer hydrogenation of nitroarenes with formic acid[J]. ChemSusChem,2018,11(23):4156-4165. doi: 10.1002/cssc.201802163
    [6] Sun X, Olivos-Suarez A I, Osadchii D, et al. Single cobalt sites in mesoporous N-doped carbon matrix for selective catalytic hydrogenation of nitroarenes[J]. Journal of Catalysis,2018,357:20-28. doi: 10.1016/j.jcat.2017.10.030
    [7] Nandi D, Siwal S, Choudhary M, et al. Carbon nitride supported palladium nanoparticles: An active system for the reduction of aromatic nitro-compounds[J]. Applied Catalysis A: General,2016,523:31-38. doi: 10.1016/j.apcata.2016.04.004
    [8] Leng F, Gerber I C, Lecante P, et al. Controlled and chemoselective hydrogenation of nitrobenzene over Ru@C60 catalysts. ACS Catalysis, 2016, 6 (9): 6018-6024.
    [9] Goyal V, Sarki N, Poddar M K, et al. Biorenewable carbon-supported Ru catalyst for N-alkylation of amines with alcohols and selective hydrogenation of nitroarenes[J]. New Journal of Chemistry,2021,45(32):14687-14694. doi: 10.1039/D1NJ01654G
    [10] Sun Z, Zhao Y, Xie Y, et al. The solvent-free selective hydrogenation of nitrobenzene to aniline: An unexpected catalytic activity of ultrafine Pt nanoparticles deposited on carbon nanotubes[J]. Green Chemistry,2010,12(6):1007-1011. doi: 10.1039/c002391d
    [11] Prekob Á, Muránszky G, Szőri M, et al. Preparation of highly effective carbon black supported Pd–Pt bimetallic catalysts for nitrobenzene hydrogenation[J]. Nanotechnology,2021,32(42):425701. doi: 10.1088/1361-6528/ac137d
    [12] Prekob Á, Szamosvölgyi Á, Muránszky G, et al. Palladium decorated N-doped carbon foam as a highly active and selective catalyst for nitrobenzene hydrogenation[J]. International Journal of Molecular Sciences,2022,23(12):6423. doi: 10.3390/ijms23126423
    [13] Xiong W, Wang Z, He S, et al. Nitrogen-doped carbon nanotubes as a highly active metal-free catalyst for nitrobenzene hydrogenation[J]. Applied Catalysis B: Environmental,2020,260:118105. doi: 10.1016/j.apcatb.2019.118105
    [14] Chen X, Shen Q, Li Z, et al. Metal-free H2 activation for highly selective hydrogenation of nitroaromatics using phosphorus-doped carbon nanotubes[J]. ACS Applied Materials & Interfaces,2020,12(1):654-666.
    [15] Yang F, Cao Y, Chen Z, et al. Large-scale preparation of B/N co-doped graphene-like carbon as an efficient metal-free catalyst for the reduction of nitroarenes[J]. New Journal of Chemistry,2018,42(4):2718-2725. doi: 10.1039/C7NJ04187J
    [16] Michalke J, Haas M, Krisch D, et al. Generation of cobalt-containing nanoparticles on carbon via pyrolysis of a cobalt corrole and its application in the hydrogenation of nitroarenes[J]. Catalysts,2022,12(1):11.
    [17] Hu A, Lu X, Cai D, et al. Selective hydrogenation of nitroarenes over MOF-derived Co@CN catalysts at mild conditions[J]. Molecular Catalysis,2019,472:27-36. doi: 10.1016/j.mcat.2019.04.008
    [18] Lyu D, Mollamahale Y B, Huang S, et al. Ultra-high surface area graphitic Fe-N-C nanospheres with single-atom iron sites as highly efficient non-precious metal bifunctional catalysts towards oxygen redox reactions[J]. Journal of Catalysis,2018,368:279-290. doi: 10.1016/j.jcat.2018.10.025
    [19] Li Y, Zhang X, Ren J, et al. Hierarchical porous nitrogen-doped carbon material with Fe-NX as an excellent electrocatalyst for oxygen reduction reaction[J]. Catalysis Communications,2022,165:106439. doi: 10.1016/j.catcom.2022.106439
    [20] Chen L, Liu X, Zheng L, et al. Insights into the role of active site density in the fuel cell performance of Co-N-C catalysts[J]. Applied Catalysis B:Environmental,2019,256:117849. doi: 10.1016/j.apcatb.2019.117849
    [21] Wang D, Luo M, Yue L, et al. Co-embedded N-doped hierarchical porous biocarbons: Facile synthesis and used as highly efficient catalysts for levulinic acid hydrogenation[J]. Fuel,2022,329:125364. doi: 10.1016/j.fuel.2022.125364
    [22] Cui X, Liang K, Tian M, et al. Cobalt nanoparticles supported on N-doped mesoporous carbon as a highly efficient catalyst for the synthesis of aromatic amines[J]. Journal of Colloid and Interface Science,2017,501:231-240. doi: 10.1016/j.jcis.2017.04.053
    [23] Wang J, Wang Y, Hu H, et al. From metal–organic frameworks to porous carbon materials: recent progress and prospects from energy and environmental perspectives[J]. Nanoscale,2020,12(7):4238-4268. doi: 10.1039/C9NR09697C
    [24] Gao C, Mu S, Yan R, et al. Recent advances in ZIF-derived atomic metal–N–C electrocatalysts for oxygen reduction reaction: Synthetic strategies, active centers, and stabilities[J]. Small,2022,18(14):2105409. doi: 10.1002/smll.202105409
    [25] Yang S, Peng L, Oveisi E, et al. MOF-derived cobalt phosphide/carbon nanocubes for selective hydrogenation of nitroarenes to anilines[J]. Chemistry-A European Journal,2018,24(17):4234-4238. doi: 10.1002/chem.201705400
    [26] Zhang G, Tang F, Wang L, et al. ZIF-67 derived CoSx/NC catalysts for selective reduction of nitro compounds[J]. Journal of Central South University,2021,28(5):1279-1290. doi: 10.1007/s11771-021-4696-8
    [27] Liang Y, Huang G, Zhang Q, et al. Hierarchical porous carbons from biowaste: Hydrothermal carbonization and high-performance for Rhodamine B adsorptive removal[J]. Journal of Molecular Liquids,2021,330:115580. doi: 10.1016/j.molliq.2021.115580
    [28] Huang G, Wang Y, Zhang T, et al. High-performance hierarchical N-doped porous carbons from hydrothermally carbonized bamboo shoot shells for symmetric supercapacitors[J]. Journal of the Taiwan Institute of Chemical Engineers,2019,96:672-680. doi: 10.1016/j.jtice.2018.12.024
    [29] Hou Z, Tao Y, Bai T, et al. Efficient Rhodamine B removal by N-doped hierarchical carbons obtained from KOH activation and urea-oxidation of glucose hydrochar[J]. Journal of Environmental Chemical Engineering,2021,9(4):105757. doi: 10.1016/j.jece.2021.105757
    [30] Zhang Z, Luo D, Hui G, et al. In-situ ion-activated carbon nanospheres with tunable ultramicroporosity for superior CO2 capture[J]. Carbon,2019,143:531-541. doi: 10.1016/j.carbon.2018.10.096
    [31] Feng J, Cai R, Magliocca E, et al. Iron, nitrogen Co-doped carbon spheres as low cost, scalable electrocatalysts for the oxygen reduction reaction[J]. Advanced Functional Materials,2021,31(46):2102974. doi: 10.1002/adfm.202102974
    [32] Xu L, Guo L, Hu G, et al. Nitrogen-doped porous carbon spheres derived from d-glucose as highly-efficient CO2 sorbents[J]. RSC Advances,2015,5(48):37964-37969. doi: 10.1039/C5RA04421A
    [33] Ma X, Zhou Y X, Liu H, et al. A MOF-derived Co-CoO@N-doped porous carbon for efficient tandem catalysis: dehydrogenation of ammonia borane and hydrogenation of nitro compounds[J]. Chemical Communications,2016,52(49):7719-7722. doi: 10.1039/C6CC03149H
    [34] Zhang G, Tang F, Wang X, et al. , Atomically dispersed Co–S–N active sites anchored on hierarchically porous carbon for efficient catalytic hydrogenation of nitro compounds[J]. ACS Catalysis,2022,12(10):5786-5794.
    [35] Zhang L, Shang N, Gao S, et al. Atomically dispersed Co catalyst for efficient hydrode-oxygenation of lignin-derived species and hydrogenation of nitroaromatics[J]. ACS Catalysis,2020,10(15):8672-8682. doi: 10.1021/acscatal.0c00239
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  286
  • HTML全文浏览量:  159
  • PDF下载量:  90
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-30
  • 录用日期:  2023-02-07
  • 修回日期:  2023-01-29
  • 网络出版日期:  2023-02-14
  • 刊出日期:  2023-06-01

目录

    /

    返回文章
    返回