留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

The in situ formation of ZnS nanodots embedded in honeycomb-like N-S co-doped carbon nanosheets derived from waste biomass for use in lithium-ion batteries

YU Qiu-xiang LI Huan-xin WEN Yong-liang XU Chen-xi QIN Shi-feng KUANG Ya-fei ZHOU Hai-hui HUANG Zhong-yuan

余秋香, 李焕新, 文永亮, 徐晨曦, 秦石峰, 旷亚非, 周海晖, 黄中原. 基于废弃生物质原位合成蜂窝状镶嵌ZnS纳米点的N-S共掺杂炭纳米片的制备及其锂离子电池性能. 新型炭材料(中英文), 2023, 38(3): 543-554. doi: 10.1016/S1872-5805(23)60726-7
引用本文: 余秋香, 李焕新, 文永亮, 徐晨曦, 秦石峰, 旷亚非, 周海晖, 黄中原. 基于废弃生物质原位合成蜂窝状镶嵌ZnS纳米点的N-S共掺杂炭纳米片的制备及其锂离子电池性能. 新型炭材料(中英文), 2023, 38(3): 543-554. doi: 10.1016/S1872-5805(23)60726-7
YU Qiu-xiang, LI Huan-xin, WEN Yong-liang, XU Chen-xi, QIN Shi-feng, KUANG Ya-fei, ZHOU Hai-hui, HUANG Zhong-yuan. The in situ formation of ZnS nanodots embedded in honeycomb-like N-S co-doped carbon nanosheets derived from waste biomass for use in lithium-ion batteries. New Carbon Mater., 2023, 38(3): 543-554. doi: 10.1016/S1872-5805(23)60726-7
Citation: YU Qiu-xiang, LI Huan-xin, WEN Yong-liang, XU Chen-xi, QIN Shi-feng, KUANG Ya-fei, ZHOU Hai-hui, HUANG Zhong-yuan. The in situ formation of ZnS nanodots embedded in honeycomb-like N-S co-doped carbon nanosheets derived from waste biomass for use in lithium-ion batteries. New Carbon Mater., 2023, 38(3): 543-554. doi: 10.1016/S1872-5805(23)60726-7

基于废弃生物质原位合成蜂窝状镶嵌ZnS纳米点的N-S共掺杂炭纳米片的制备及其锂离子电池性能

doi: 10.1016/S1872-5805(23)60726-7
基金项目: 国家自然科学基金项目(52274298,51974114, 51672075,21908049);中国博士后科学基金(2020M682560);湖南省自然科学基金(2020JJ4175);湖南省科技创新计划(2020RC2024)和中央高校基础研究经费
详细信息
    通讯作者:

    李焕新. E-mail:hl583@cam.ac.uk

    周海晖. E-mail:haihuizh@163.com

    黄中原. E-mail:zhongyuan.222@163.com

  • 中图分类号: TB33

The in situ formation of ZnS nanodots embedded in honeycomb-like N-S co-doped carbon nanosheets derived from waste biomass for use in lithium-ion batteries

More Information
  • 摘要: 以ZnCl2为硬模板和锌源,三聚氰胺和硫脲为氮源和硫源,废弃生物质橘子皮为碳源,通过高温烧结和后续蚀刻处理制备出硫化锌纳米点与三维N-S共掺杂炭纳米片的纳米复合材料(ZnS/NS-CN)。当应用于锂离子电池时,ZnS/NS-CN表现出较高的可逆容量(0.1 A g−1下,循环300次后容量仍有853.5 mAh g−1),优异的长期循环稳定性(5 A g−1下,循环1000次后,容量保持率为70.1%)和优异的倍率性能。此外,在0.5~4 V下组装和测试的ZnS/NS-CN//LiNiCoMnO2全电池表现出优异的电池性能(在0.2 C下循环150次后容量为140.4 mAh g−1,能量密度为132.4 Wh kg−1)。
  • FIG. 2366.  FIG. 2366.

    FIG. 2366..  FIG. 2366.

    Figure  1.  Schematic illustration for in situ formation of ZnS nanodots embedded in honeycomb-like N-S co-doped carbon nanosheets (denoted as ZnS/NS-CN)

    Figure  2.  SEM images of (a-c) OPBC, (d-f) NS-CN and (g-i) ZnS/NS-CN

    Figure  3.  (a) TEM image, (b,c) HR-TEM images, (d) HADDF-STEM image of ZnS/NS-CN and corresponding elemental mapping of C (red), N (green), S (purple) and Zn (blue)

    Figure  4.  (a) XRD patterns of OPBC, NS-CN, ZnS/NS-CN. (b) XPS survey spectrum of ZnS/NS-CN. High resolution XPS spectra of (c) C 1s, (d) N 1s, (e) S 2p, (f) Zn 2p of ZnS/NS-CN

    Figure  5.  (a) N2 adsorption−desorption isotherm curve and pore size distribution (inset) of ZnS/NS-CN. (b) TGA curve of the ZnS/NS-CN composite

    Figure  6.  (a) CV curves of the ZnS/NS-CN anode for the initial four cycles at a scan rate of 0.1 mV s−1. (b) Charge/discharge curves of the ZnS/NS-CN anode for 1st, 2nd, 100th, 200th, 300th cycles. Cycling performance of the ZnS/NS-CN, NS-CN and OPBC electrodes at (c) 0.1 A g−1 and (f) 5 A g−1. (d) Rate capabilities at various current densities and (e) EIS plots of the ZnS/NS-CN, NS-CN and OPBC electrodes

    Figure  7.  (a) CV curves of ZnS/NS-CN at scan rates from 0.3 to 1.5 mV s−1. (b) b value determination for anodic process. (c) Capacitance contribution (pink) and diffusion contribution (violet) at 0.3 mV s−1. (d) The capacitance contribution ratio at increasing scan rate from 0.3 to 1.5 mV s−1

    Figure  8.  (a) Charge/discharge curves, (b) cycling performance, (c) rate capability, and (d) EIS plot before testing of the ZnS/NS-CN//LiNiCoMnO2 full cells

  • [1] Scrosati B, Garche J. Lithium batteries: Status, prospects and future[J]. Journal of power sources,2010,195(9):2419-2430. doi: 10.1016/j.jpowsour.2009.11.048
    [2] Wu F, Maier J, Yu Y. Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries[J]. Chemical Society Reviews,2020,49(5):1569-1614. doi: 10.1039/C7CS00863E
    [3] Goodenough J B, Kim Y. Challenges for rechargeable Li batteries[J]. Chemistry of materials,2010,22(3):587-603. doi: 10.1021/cm901452z
    [4] Liu K, Liu Y, Lin D, et al. Materials for lithium-ion battery safety[J]. Science advances,2018,4(6):eaas9820. doi: 10.1126/sciadv.aas9820
    [5] Chen Q, Tan X, Liu Y, et al. Biomass-derived porous graphitic carbon materials for energy and environmental applications[J]. Journal of Materials Chemistry A,2020,8(12):5773-5811. doi: 10.1039/C9TA11618D
    [6] Bruce P G, Scrosati B, Tarascon J M. Nanomaterials for rechargeable lithium batteries[J]. Angewandte Chemie International Edition,2008,47(16):2930-2946. doi: 10.1002/anie.200702505
    [7] Liu H, Liu X, Li W, et al. Porous carbon composites for next generation rechargeable lithium batteries[J]. Advanced Energy Materials,2017,7(24):1700283. doi: 10.1002/aenm.201700283
    [8] Du X, Zhao H, Lu Y, et al. Synthesis of core-shell-like ZnS/C nanocomposite as improved anode material for lithium ion batteries[J]. Electrochimica Acta,2017,228:100-106. doi: 10.1016/j.electacta.2017.01.038
    [9] Zhang H, Zhao H, Khan M A, et al. Recent progress in advanced electrode materials, separators and electrolytes for lithium batteries[J]. Journal of Materials Chemistry A,2018,6(42):20564-20620. doi: 10.1039/C8TA05336G
    [10] Zhao Y, Li X, Yan B, et al. Recent developments and understanding of novel mixed transition-metal oxides as anodes in lithium ion batteries[J]. Advanced Energy Materials,2016,6(8):1502175. doi: 10.1002/aenm.201502175
    [11] Zheng Z, Wu H H, Liu H, et al. Achieving fast and durable lithium storage through amorphous FeP nanoparticles encapsulated in ultrathin 3D P-doped porous carbon nanosheets[J]. ACS Nano,2020,14(8):9545-9561. doi: 10.1021/acsnano.9b08575
    [12] Zhang Y, Jiao Y, Liao M, et al. Carbon nanomaterials for flexible lithium ion batteries[J]. Carbon,2017,124:79-88. doi: 10.1016/j.carbon.2017.07.065
    [13] He C, Wu S, Zhao N, et al. Carbon-encapsulated Fe3O4 nanoparticles as a high-rate lithium ion battery anode material[J]. ACS Nano,2013,7(5):4459-4469. doi: 10.1021/nn401059h
    [14] Zhang S, Lin R, Yue W, et al. Novel synthesis of metal sulfides-loaded porous carbon as anode materials for lithium-ion batteries[J]. Chemical Engineering Journal,2017,314:19-26. doi: 10.1016/j.cej.2016.12.123
    [15] Ding Y, Hu L, He D, et al. Design of multishell microsphere of transition metal oxides/carbon composites for lithium ion battery[J]. Chemical Engineering Journal,2020,380:122489. doi: 10.1016/j.cej.2019.122489
    [16] Jin C, Nai J, Sheng O, et al. Biomass-based materials for green lithium secondary batteries[J]. Energy & Environmental Science,2021,14(3):1326-1379.
    [17] Gong H, Du T, Liu L, et al. Self-source silicon embedded in 2D biomass-based carbon sheet as anode material for sodium ion battery[J]. Applied Surface Science,2022,586:152759. doi: 10.1016/j.apsusc.2022.152759
    [18] Liang C, Wang P, Li Y, et al. Biomass based composite used as anode materials: Porous ZnO anchored on the rice husk-derived carbon substrate for Li-ion batteries[J]. Materials Science and Engineering:B,2022,278:115656. doi: 10.1016/j.mseb.2022.115656
    [19] Li H, Gong Y, Fu C, et al. A novel method to prepare a nanotubes@ mesoporous carbon composite material based on waste biomass and its electrochemical performance[J]. Journal of Materials Chemistry A,2017,5(8):3875-3887. doi: 10.1039/C6TA10786A
    [20] Li T, Zhi D D, Guo Z H, et al. 3D porous biomass-derived carbon materials: Biomass sources, controllable transformation and microwave absorption application[J]. Green Chemistry,2022,24(2):647-674. doi: 10.1039/D1GC02566J
    [21] John K I, Omorogie M O. Biomass-based hydrothermal carbons for catalysis and environmental cleanup: A review[J]. Green Chemistry Letters and Reviews,2022,15(1):162-186. doi: 10.1080/17518253.2022.2028017
    [22] Huang M, Mi K, Zhang J, et al. MOF-derived Bi-metal embedded N-doped carbon polyhedral nanocages with enhanced lithium storage[J]. Journal of Materials Chemistry A,2017,5(1):266-274. doi: 10.1039/C6TA09030C
    [23] Teng Y, Liu H, Liu D, et al. Pitaya-like carbon-coated ZnS/carbon nanospheres with inner three-dimensional nanostructure as high-performance anode for lithium-ion battery[J]. Journal of colloid and interface science,2019,554:220-228. doi: 10.1016/j.jcis.2019.07.012
    [24] Dong S, Li C, Li Z, et al. Mesoporous hollow Sb/ZnS@ C Core-shell heterostructures as anodes for high-performance sodium-ion batteries[J]. Small,2018,14(16):1704517. doi: 10.1002/smll.201704517
    [25] Feng Q, Li H, Tan Z, et al. Design and preparation of three-dimensional MnO/N-doped carbon nanocomposites based on waste biomass for high storage and ultra-fast transfer of lithium ions[J]. Journal of Materials Chemistry A,2018,6(40):19479-19487. doi: 10.1039/C8TA07096B
    [26] Chang Y, Zhang G, Han B, et al. Polymer dehalogenation-enabled fast fabrication of N, S-codoped carbon materials for superior supercapacitor and deionization applications[J]. ACS Applied Materials & Interfaces,2017,9(35):29753-29759.
    [27] Chen M, Zhang Z, Si L, et al. Engineering of yolk-double shell cube-like SnS@ N-S codoped carbon as a high-performance anode for Li- and Na-ion batteries[J]. ACS Applied Materials & Interfaces,2019,11(38):35050-35059.
    [28] Jing M, Chen Z, Li Z, et al. Facile synthesis of ZnS/N, S co-doped carbon composite from zinc metal complex for high-performance sodium-ion batteries[J]. ACS Applied Materials & Interfaces,2018,10(1):704-712.
    [29] Zhang W, Huang Z, Zhou H, et al. Facile synthesis of ZnS nanoparticles decorated on defective CNTs with excellent performances for lithium-ion batteries anode material[J]. Journal of Alloys and Compounds,2020,816:152633. doi: 10.1016/j.jallcom.2019.152633
    [30] Park G D, Choi S H, Lee J K, et al. One-Pot method for synthesizing spherical-like metal sulfide-reduced graphene oxide composite powders with superior electrochemical properties for lithium-ion batteries[J]. Chemistry-A European Journal,2014,20(38):12183-12189. doi: 10.1002/chem.201403471
    [31] Mao M, Jiang L, Wu L, et al. The structure control of ZnS/graphene composites and their excellent properties for lithium-ion batteries[J]. Journal of Materials Chemistry A,2015,3(25):13384-13389. doi: 10.1039/C5TA01501D
    [32] Chen Z, Wu R, Wang H, et al. Construction of hybrid hollow architectures by in-situ rooting ultrafine ZnS nanorods within porous carbon polyhedra for enhanced lithium storage properties[J]. Chemical Engineering Journal,2017,326:680-690. doi: 10.1016/j.cej.2017.06.009
    [33] Park A R, Jeon K J, Park C M. Electrochemical mechanism of Li insertion/extraction in ZnS and ZnS/C anodes for Li-ion batteries[J]. Electrochimica Acta,2018,265:107-114. doi: 10.1016/j.electacta.2018.01.158
    [34] Grugeon S, Laruelle S, Dupont L, et al. An update on the reactivity of nanoparticles Co-based compounds towards Li[J]. Solid state sciences,2003,5(6):895-904. doi: 10.1016/S1293-2558(03)00114-6
    [35] Ponrouch A, Taberna P L, Simon P, et al. On the origin of the extra capacity at low potential in materials for Li batteries reacting through conversion reaction[J]. Electrochimica Acta,2012,61:13-18. doi: 10.1016/j.electacta.2011.11.029
    [36] Mao Y, Duan H, Xu B, et al. Lithium storage in nitrogen-rich mesoporous carbon materials[J]. Energy & Environmental Science,2012,5(7):7950-7955.
    [37] Balaya P, Bhattacharyya A J, Jamnik J, et al. Nano-ionics in the context of lithium batteries[J]. Journal of Power Sources,2006,159(1):171-178. doi: 10.1016/j.jpowsour.2006.04.115
    [38] Augustyn V, Come J, Lowe M A, et al. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance[J]. Nature materials,2013,12(6):518-522. doi: 10.1038/nmat3601
    [39] Zhang W, Zhou H, Huang Z, et al. 3D hierarchical microspheres constructed by ultrathin MoS2-C nanosheets as high-performance anode material for sodium-ion batteries[J]. Journal of Energy Chemistry,2020,49:307-315. doi: 10.1016/j.jechem.2020.03.001
    [40] Wang F, Zhang W, Zhou H, et al. Preparation of porous FeS2-C/RG composite for sodium ion batteries[J]. Chemical Engineering Journal,2020,380:122549. doi: 10.1016/j.cej.2019.122549
    [41] Wang M, Huang Y, Zhang N, et al. Fabrication of Ti3+ doped TiO2 coated Mn3O4 nanorods with voids and channels for lithium storage[J]. Chemical Engineering Journal,2019,370:1425-1433. doi: 10.1016/j.cej.2019.04.023
    [42] Yu D, Pang Q, Gao Y, et al. Hierarchical flower-like VS2 nanosheets-A high rate-capacity and stable anode material for sodium-ion battery[J]. Energy Storage Materials,2018,11:1-7. doi: 10.1016/j.ensm.2017.09.002
  • Supporting Information20220166.pdf
  • 加载中
图(9)
计量
  • 文章访问数:  425
  • HTML全文浏览量:  181
  • PDF下载量:  96
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-11
  • 修回日期:  2022-11-07
  • 网络出版日期:  2023-03-01
  • 刊出日期:  2023-06-01

目录

    /

    返回文章
    返回