留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨质多孔炭的制备及其双离子电容储能机理

展长振 曾晓婕 吕瑞涛 沈洋 黄正宏 康飞宇

展长振, 曾晓婕, 吕瑞涛, 沈洋, 黄正宏, 康飞宇. 石墨质多孔炭的制备及其双离子电容储能机理. 新型炭材料(中英文), 2023, 38(3): 576-582. doi: 10.1016/S1872-5805(23)60727-9
引用本文: 展长振, 曾晓婕, 吕瑞涛, 沈洋, 黄正宏, 康飞宇. 石墨质多孔炭的制备及其双离子电容储能机理. 新型炭材料(中英文), 2023, 38(3): 576-582. doi: 10.1016/S1872-5805(23)60727-9
ZHAN Chang-zhen, ZENG Xiao-jie, LV Rui-tao, SHEN Yang, HUANG Zheng-hong, KANG Fei-yu. Preparation of porous graphitic carbon and its dual-ion capacitance energy storage mechanism. New Carbon Mater., 2023, 38(3): 576-582. doi: 10.1016/S1872-5805(23)60727-9
Citation: ZHAN Chang-zhen, ZENG Xiao-jie, LV Rui-tao, SHEN Yang, HUANG Zheng-hong, KANG Fei-yu. Preparation of porous graphitic carbon and its dual-ion capacitance energy storage mechanism. New Carbon Mater., 2023, 38(3): 576-582. doi: 10.1016/S1872-5805(23)60727-9

石墨质多孔炭的制备及其双离子电容储能机理

doi: 10.1016/S1872-5805(23)60727-9
详细信息
    作者简介:

    展长振,博士. E-mail:zhanchangzhen@sina.com

    通讯作者:

    黄正宏,博士,教授. E-mail:zhhuang@tsinghua.edu.cn

  • 中图分类号: TQ127.1+1

Preparation of porous graphitic carbon and its dual-ion capacitance energy storage mechanism

More Information
  • 摘要: 作为锂离子电池和超级电容器的结合,锂离子电容器由于兼备电池和电容器的优点而受到了广泛关注。然而因其正极双电层电容行为的储能机理,锂离子电容器的能量特性受到了较大的限制。因此,为了从根本上增强锂离子电容器正极材料性能,本研究提出了双离子电容器的储能机理。以柠檬酸钾/镁/铁为原料,合成了兼备石墨质结构与层次化多孔结构的石墨质多孔炭,并以其为正极材料,实现了兼具锂离子电容器正极离子吸附行为与双离子电池正极阴离子插层行为的双离子电容储能。由于石墨质多孔炭结构中石墨质结构在高电位下由阴离子插层反应贡献的额外平台容量以及对于材料导电性的增强,石墨质多孔炭正极材料的能量特性明显超过多孔炭及人造石墨正极,实现了从储能机理的层面的器件性能增强。
  • FIG. 2369.  FIG. 2369.

    FIG. 2369..  FIG. 2369.

    图  1  (a) PC-K与(b) PC-Mg的SEM照片

    Figure  1.  SEM images of (a) PC-K and (b) PC-Mg

    图  2  PC-K与PC-Mg样品的(a)氮气吸附/脱附等温线及(b)对应的孔径分布

    Figure  2.  (a) N2 adsorption/desorption isotherms and (b) the corresponding pore-size distributions of PC-K and PC-Mg

    图  3  (a) PC-KMg与(b) Citrate-PGC的TEM照片

    Figure  3.  TEM images of (a) PC-KMg and (b) Citrate-PGC

    图  4  (a) PC-KMg与(b) Citrate-PGC的X射线衍射图谱

    Figure  4.  XRD patterns of (a) as-prepared PC-KMg and (b) Citrate-PGC

    图  5  PC-KMg与Citrate-PGC的氮气吸附/脱附等温线

    Figure  5.  N2 adsorption/desorption isotherms of PC-KMg and Citrate-PGC

    图  6  Citrate-PGC样品的孔径分布

    Figure  6.  Pore-size distributions of Citrate-PGC

    图  7  正极材料的(a)恒流充放电曲线及(b)循环伏安曲线

    Figure  7.  (a) Galvanostatic charge/discharge and (b) cyclic voltammetry curves of the positive electrode materials

    图  8  正极材料的恒流放电曲线及能量特性

    Figure  8.  Galvanostatic discharge curves and energy performance of the positive electrode materials

  • [1] Wang H, Zhu C, Chao D, et al. Nonaqueous hybrid lithium-ion and sodium-ion capacitors[J]. Advanced Materials,2017,29(46):1702093. doi: 10.1002/adma.201702093
    [2] Li B, Zheng J, Zhang H, et al. Electrode materials, electrolytes, and challenges in nonaqueous lithium-ion capacitors[J]. Advanced Materials,2018,30(17):1705670. doi: 10.1002/adma.201705670
    [3] Han D, Zhang J, Weng Z, et al. Two-dimensional materials for lithium/sodium-ion capacitors[J]. Materials Today Energy,2019,11:30-45. doi: 10.1016/j.mtener.2018.10.013
    [4] Park C M, Jo Y N, Park J W, et al. Anodic performances of surface-treated natural graphite for lithium ion capacitors[J]. Bulletin of the Korean Chemical Society,2014,35(9):2630-2634. doi: 10.5012/bkcs.2014.35.9.2630
    [5] Zhang J, Liu X, Wang J, et al. Different types of pre-lithiated hard carbon as negative electrode material for lithium-ion capacitors[J]. Electrochimica Acta,2016,187:134-142. doi: 10.1016/j.electacta.2015.11.055
    [6] Kim H, Park K Y, Cho M Y, et al. High-performance hybrid supercapacitor based on graphene-wrapped Li4Ti5O12 and activated carbon[J]. ChemElectroChem,2014,1(1):125-130. doi: 10.1002/celc.201300186
    [7] Xu F, Xu H, Chen X, et al. Radical covalent organic frameworks: A general strategy to immobilize open-accessible polyradicals for high-performance capacitive energy storage[J]. Angewandte Chemie International Edition,2015,54(23):6814-6818. doi: 10.1002/anie.201501706
    [8] Liang Y, Zhang W, Wu D, et al. Interface engineering of carbon-based nanocomposites for advanced electrochemical energy storage[J]. Advanced Materials Interfaces,2018,5(14):1800430. doi: 10.1002/admi.201800430
    [9] Xia Q Y, Yang H, Wang M, et al. High energy and high power lithium-ion capacitors based on boron and nitrogen dual-doped 3D carbon nanofibers as both cathode and anode[J]. Advanced Energy Materials,2017,7(22):1701336. doi: 10.1002/aenm.201701336
    [10] 苏方远, 谢莉婧, 孙国华, 等. 石墨烯在电化学储能过程中理论研究进展[J]. 新型炭材料,2016,31(4):363-377. doi: 10.19869/j.ncm.1007-8827.2016.04.001

    Su F Y, Xie L J, Sun G H, et al. Theoretical research progress on the use of graphene in different electrochemical processes[J]. New Carbon Materials,2016,31(4):363-377. doi: 10.19869/j.ncm.1007-8827.2016.04.001
    [11] Zhao X, Johnston C, Grant P S. A novel hybrid supercapacitor with a carbon nanotube cathode and an iron oxide/carbon nanotube composite anode[J]. Journal of Materials Chemistry,2009,19(46):8755-8760. doi: 10.1039/b909779a
    [12] Han P, Xu G, Han X, et al. Lithium ion capacitors in organic electrolyte system: Scientific problems, material development, and key technologies[J]. Advanced Energy Materials,2018,8(26):1801243. doi: 10.1002/aenm.201801243
    [13] Zhang X, Tang Y, Zhang F, et al. A novel aluminum-graphite dual-ion battery[J]. Advanced Energy Materials,2016,6(11):1502588. doi: 10.1002/aenm.201502588
    [14] Seel J A, Dahn J R. Electrochemical intercalation of  PF6 into graphite[J]. Journal of The Electrochemical Society,2000,147(3):892-898. doi: 10.1149/1.1393288
    [15] Li W H, Ning Q L, Xi X T, et al. Highly improved cycling stability of anion de-/intercalation in the graphite cathode for dual-ion batteries[J]. Advanced Materials,2019,31(4):1804766. doi: 10.1002/adma.201804766
    [16] Wang M, Tang Y. A review on the features and progress of dual-ion batteries[J]. Advanced Energy Materials,2018,8(19):1703320. doi: 10.1002/aenm.201703320
    [17] Zhou Q Q, Chen X Y, Wang B. An activation-free protocol for preparing porous carbon from calcium citrate and the capacitive performance[J]. Microporous and Mesoporous Materials,2012,158:155-161. doi: 10.1016/j.micromeso.2012.03.031
    [18] Yu X, Zhao J, Lv R, et al. Facile synthesis of nitrogen-doped carbon nanosheets with hierarchical porosity for high performance supercapacitors and lithium-sulfur batteries[J]. Journal of Materials Chemistry A,2015,3(36):18400-18405. doi: 10.1039/C5TA05374A
    [19] Yu X, Deng J, Zhan C, et al. A high-power lithium-ion hybrid electrochemical capacitor based on citrate-derived electrodes[J]. Electrochimica Acta,2017,228:76-81. doi: 10.1016/j.electacta.2017.01.058
    [20] Liu H, Li S, Yang H, et al. Stepwise crosslinking: A facile yet versatile conceptual strategy to nanomorphology-persistent porous organic polymers[J]. Advanced Materials,2017,29(27):1700723. doi: 10.1002/adma.201700723
    [21] Chang B B, Guo Y Z, Li Y C, et al. Graphitized hierarchical porous carbon nanospheres: Simultaneous activation/graphitization and superior supercapacitance performance[J]. Journal of Materials Chemistry A,2015,3(18):9565-9577. doi: 10.1039/C5TA00867K
    [22] Liang Q, Ye L, Huang Z H, et al. A honeycomb-like porous carbon derived from pomelo peel for use in high-performance supercapacitors[J]. Nanoscale,2014,6(22):13831-13837. doi: 10.1039/C4NR04541F
    [23] Li Z Q, Lu C J, Xia Z P, et al. X-ray diffraction patterns of graphite and turbostratic carbon[J]. Carbon,2007,45(8):1686-1695. doi: 10.1016/j.carbon.2007.03.038
    [24] 刘树和, 英哲, 王作明, 等. 天然石墨球-热解炭核壳结构的制备及电化学性能研究[J]. 新型炭材料,2008,23(1):30-36. doi: 10.1016/S1872-5805(08)60010-4

    Liu S H, Zhe Y, Wang Z M, et al. Improving the electrochemical properties of natural graphite spheres by coating with a pyrolytic carbon shell[J]. New carbon materials,2008,23(1):30-36. doi: 10.1016/S1872-5805(08)60010-4
    [25] Lei Y, Huang Z H, Yang Y, et al. Porous mesocarbon microbeads with graphitic shells: constructing a high-rate, high-capacity cathode for hybrid supercapacitor[J]. Scientific Reports,2013,3:2477. doi: 10.1038/srep02477
  • 加载中
图(9)
计量
  • 文章访问数:  336
  • HTML全文浏览量:  146
  • PDF下载量:  119
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-26
  • 修回日期:  2022-10-25
  • 网络出版日期:  2023-03-01
  • 刊出日期:  2023-06-01

目录

    /

    返回文章
    返回