留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Recent developments in MXene and MXene/carbon composites for use in biomedical applications

QIN Miao Chaima Merzougui SU Yi-meng LI Yong-feng CHEN Wei-yi HUANG Di

秦苗, ChaimaMerzougui, 苏一蒙, 李永锋, 陈维毅, 黄棣. MXene及MXene/碳基复合材料在生物医学领域的研究进展. 新型炭材料(中英文), 2023, 38(3): 496-509. doi: 10.1016/S1872-5805(23)60730-9
引用本文: 秦苗, ChaimaMerzougui, 苏一蒙, 李永锋, 陈维毅, 黄棣. MXene及MXene/碳基复合材料在生物医学领域的研究进展. 新型炭材料(中英文), 2023, 38(3): 496-509. doi: 10.1016/S1872-5805(23)60730-9
QIN Miao, Chaima Merzougui, SU Yi-meng, LI Yong-feng, CHEN Wei-yi, HUANG Di. Recent developments in MXene and MXene/carbon composites for use in biomedical applications. New Carbon Mater., 2023, 38(3): 496-509. doi: 10.1016/S1872-5805(23)60730-9
Citation: QIN Miao, Chaima Merzougui, SU Yi-meng, LI Yong-feng, CHEN Wei-yi, HUANG Di. Recent developments in MXene and MXene/carbon composites for use in biomedical applications. New Carbon Mater., 2023, 38(3): 496-509. doi: 10.1016/S1872-5805(23)60730-9

MXene及MXene/碳基复合材料在生物医学领域的研究进展

doi: 10.1016/S1872-5805(23)60730-9
基金项目: 山西-浙大先进材料与化学工程研究所基金(2021SX-AT008,2021SX-AT009)省市级;国家自然科学基金(12272253,22278291,11902214,82103147)
详细信息
    通讯作者:

    李永锋,副教授. E-mail:liyongfeng@tyut.edu.cn

    黄 棣,教授. E-mail:huangjw2067@163.com

  • 中图分类号: TB333

Recent developments in MXene and MXene/carbon composites for use in biomedical applications

Funds: This work has been supported by the National Natural Science Foundation of China (12272253, 22278291, 11902214, 82103147) and Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering (2021SX-AT008, 2021SX-AT009)
More Information
  • 摘要: MXene是一种具有独特层状结构的新型过渡金属碳化物,它具有较大的比表面积、优异的导电性、光热性能和抗菌性能等特殊的物理化学特性,因此表现出较高的应用价值。与此同时,为了追求更广泛的应用,MXene常与炭材料复合以增强其综合性能。近年来,MXene及MXene/碳基复合材料在电子、传感以及生物医药等领域受到了广泛关注。本文聚焦于MXene及MXene/碳基复合材料的制备、修饰方法及其在生物传感、抗菌材料、疾病诊断与治疗等生物医学领域中的应用,以期推动MXene研究取得更大进展。
  • FIG. 2362.  FIG. 2362.

    FIG. 2362..  FIG. 2362.

    Figure  1.  The applications of MXene and MXene/carbon composites

    Figure  2.  (a) Preparation of sandwich-like MXene/CNT layer[37]. (b) Schematic illustration of the “Brick-and-Mortar” structure Ti3C2Tx-AgNWs- PDA/Ni2+ sensor[39]. (c) The principle of NiO-rGO/MXene sensor for detecting influenza viruses[45]. Reprinted with permission

    Figure  3.  (a) Fabrication process and photothermal performances of MXene/Ag composites[52]. (b) Preparation of SP@MX-TOB/GelMA antibacterial treatment platform[53]. (c) Fabrication and antibacterial mechanism of Bi2S3/MXene Schottky junction[55]. (d) Schematic image of photothermal mechanism of MXene/MoS2 bio-heterojunctions[27]. (e) Schematic diagram of photocatalytic mechanism of MXene/MoS2 bio-heterojunctions[27]. (f) Schematic illustrations of POD-like reaction and GSHOx-like reaction mechanism of MXene/MoS2 bio-heterojunctions[27]. Reprinted with permission

    Figure  4.  (a) Fabrication process of Dox@MXene/CoNWs heterojunction[58]. (b) Schematic image of chemo-photothermal synergistic anticancer platform Dox@MXene/CoNWs[58]. (c) 4T1 cell viability with different treatments[58]. (d) Preparation procedure of MXene Ti2N@oSi loaded with Dox/CDDP[60]. (e) The anticancer mechanism of Ti2N@oSi loaded with Dox/CDDP. Reprinted with permission[60]

    Figure  5.  (a) Preparation procedure and schematic illustration of multifunction diagnosis and treatment platform of Ti3C2@Au[66]. (b) Fabrication of Dox@Ti3C2-SP for PA imaging and chemo-photothermal therapy[67]. (c) Schematic illustration of diagnosis and treatment mechanism of Dox@Ti3C2-SP against cancer[67]. Reprinted with permission

    Table  1.   The comparisons of different methods to prepare MXene[17-19, 22-23]

    MethodsAdvantagesDisadvantagesSurface functional groupsRef.
    HF-etchingSimple and stableToxic and dangerous―F, ―OH, ―O[17]
    HCl/fluoride-etchingMild reaction process and safeIntroduction of hydrophobic group -Cl ―F, ―OH, ―O, ―Cl[18]
    Lewis acid molten salt etchingSuitable for producing TinNn-1High demand for temperature ―F, ―OH, ―O[19]
    Chemical vapor depositionLow cost and accurate control during reactionHigh demand for temperatureBare[22]
    Electrochemical corrosionMild and safeLong reaction time ―OH, ―O[23]
    Alkali-etchingBetter surface reactivityPoor etching effect―OH, ―O[19]
    下载: 导出CSV
  • [1] Naguib M, Mashtalir O, Carle J, et al. Two-dimensional transition metal carbides[J]. ACS Nano,2012,6(2):1322-1331. doi: 10.1021/nn204153h
    [2] Xiong D B, Li X F, Bai Z M, et al. Recent advances in layered Ti3C2Tx MXene for electrochemical energy storage[J]. Small,2018,14(17):1703419.
    [3] Naguib M, Gogotsi Y. Synthesis of two-dimensional materials by selective extraction[J]. Accounts of Chemical Research,2015,48(1):128-135. doi: 10.1021/ar500346b
    [4] Alhabeb M, Maleski K, Mathis T S, et al. Selective etching of silicon from Ti3SiC2 (MAX) to obtain 2D titanium carbide (MXene)[J]. Angewandte Chemie-International Edition,2018,57(19):5444-5448. doi: 10.1002/anie.201802232
    [5] Faraji M, Bafekry A, Fadlallah M M, et al. Surface modification of titanium carbide MXene monolayers (Ti2C and Ti3C2) via chalcogenide and halogenide atoms[J]. Physical Chemistry Chemical Physics,2021,23(28):15319-15328. doi: 10.1039/D1CP01788H
    [6] Wu M, Wang B, Hu Q, et al. The synthesis process and thermal stability of V2C MXene[J]. Materials (Basel),2018,11(11):2112. doi: 10.3390/ma11112112
    [7] Wang L, Zhang M Y, Yang B, et al. Recent sdvances in multidimensional (1D, 2D, and 3D) composite sensors derived from MXene: Synthesis, structure, application, and perspective[J]. Small Methods,2021,5(7):e2100409. doi: 10.1002/smtd.202100409
    [8] Ma P, Fang D L, Liu Y L, et al. MXene-based materials for electrochemical sodium-ion storage[J]. Advanced Science,2021,8(11):2003185. doi: 10.1002/advs.202003185
    [9] Anasori B, Lukatskaya M R, Gogotsi Y. 2D metal carbides and nitrides (MXenes) for energy storage[J]. Nature Reviews Materials,2017,2(2):16098.
    [10] Wang H W, Naguib M, Page K, et al. Resolving the structure of Ti3C2Tx MXenes through multilevel structural modeling of the atomic pair distribution function[J]. Chemistry of Materials,2016,28(1):349-359. doi: 10.1021/acs.chemmater.5b04250
    [11] Zhong Q, Li Y, Zhang G K. Two-dimensional MXene-based and MXene-derived photocatalysts: Recent developments and perspectives[J]. Chemical Engineering Journal,2021,409:128099. doi: 10.1016/j.cej.2020.128099
    [12] You Z Y, Liao Y L, Li X, et al. State-of-the-art recent progress in MXene-based photocatalysts: A comprehensive review[J]. Nanoscale,2021,13(21):9463-9504. doi: 10.1039/D1NR02224E
    [13] Mohideen M M, Liu Y, Ramakrishna S. Recent progress of carbon dots and carbon nanotubes applied in oxygen reduction reaction of fuel cell for transportation[J]. Applied Energy,2020,257:114027. doi: 10.1016/j.apenergy.2019.114027
    [14] Liao G F, He F, Li Q, et al. Emerging graphitic carbon nitride-based materials for biomedical applications[J]. Progress in Materials Science,2020,112:100666. doi: 10.1016/j.pmatsci.2020.100666
    [15] Bandar Abadi M, Weissing R, Wilhelm M, et al. Nacre-mimetic, mechanically flexible, and electrically conductive silk fibroin-MXene composite foams as piezoresistive pressure sensors[J]. ACS Applied Materials & Interfaces,2021,13(29):34996-35007.
    [16] Gazzi A, Fusco L, Khan A, et al. Photodynamic therapy based on graphene and MXene in cancer theranostics[J]. Frontiers in Bioengineering and Biotechnology,2019,7:295. doi: 10.3389/fbioe.2019.00295
    [17] Tao Q, Dahlqvist M, Lu J, et al. Two-dimensional Mo133C MXene with divacancy ordering prepared from parent 3D laminate with in-plane chemical ordering[J]. Nature Communications,2017,8:14949. doi: 10.1038/ncomms14949
    [18] Sang X H, Xie Y, Lin M W, et al. Atomic defects in monolayer titanium carbide (Ti3C2Tx) MXene[J]. ACS Nano,2016,10(10):9193-9200. doi: 10.1021/acsnano.6b05240
    [19] Luo R, Li R X, Jiang C L, et al. Facile synthesis of cobalt modified 2D titanium carbide with enhanced hydrogen evolution performance in alkaline media[J]. International Journal of Hydrogen Energy,2021,46(64):32536-32545. doi: 10.1016/j.ijhydene.2021.07.110
    [20] Kim Y J, Kim S J, Seo D, et al. Etching mechanism of monoatomic aluminum layers during MXene synthesis[J]. Chemistry of Materials,2021,33(16):6346-6355. doi: 10.1021/acs.chemmater.1c01263
    [21] Wei Y, Xiang L J, Ou H J, et al. MXene-based conductive organohydrogels with long-term environmental stability and multifunctionality[J]. Advanced Functional Materials,2020,30(48):2005135. doi: 10.1002/adfm.202005135
    [22] Xu J X, Peng T, Qin X, et al. Recent advances in 2D MXenes: Preparation, intercalation and applications in flexible devices[J]. Journal of Materials Chemistry A,2021,9(25):14147-14171. doi: 10.1039/D1TA03070A
    [23] Wei Y, Zhang P, Soomro R A, et al. Advances in the synthesis of 2D MXenes[J]. Advanced Materials,2021,33(39):2103148. doi: 10.1002/adma.202103148
    [24] Xuan J N, Wang Z Q, Chen Y Y, et al. Organic-base-driven intercalation and delamination for the production of functionalized titanium carbide nanosheets with superior photothermal therapeutic performance[J]. Angewandte Chemie-International Edition,2016,55(47):14569-14574. doi: 10.1002/anie.201606643
    [25] Ren X Y, Huo M F, Wang M M, et al. Highly catalytic niobium carbide (MXene) promotes hematopoietic recovery after radiation by free radical scavenging[J]. ACS Nano,2019,13(6):6438-6454. doi: 10.1021/acsnano.8b09327
    [26] Liu G, Zou J, Tang Q, et al. Surface modified Ti3C2 MXene nanosheets for tumor targeting photothermal/photodynamic/Chemo Synergistic Therapy[J]. ACS Applied Materials & Interfaces,2017,9(46):40077-40086.
    [27] Yang Z, Fu X, Ma D, et al. Growth factor-decorated Ti3C2 MXene/MoS2 2D Bio-heterojunctions with quad-channel photonic disinfection for effective regeneration of bacteria-invaded cutaneous tissue[J]. Small, 2021: e2103993.
    [28] Zhou X, Wang Z Y, Chan Y K, et al. Infection micromilieu-activated nanocatalytic membrane for orchestrating rapid sterilization and stalled chronic wound regeneration[J]. Advanced Functional Materials, 2022, 32(7): 2109469.
    [29] Zhang Y, Chang T-H, Jing L, et al. Heterogeneous, 3D architecturing of 2D titanium carbide (MXene) for microdroplet manipulation and voice recognition[J]. ACS Applied Materials & Interfaces,2020,12(7):8392-8402.
    [30] Cai Y C, Shen J, Yang C W, et al. Mixed-dimensional MXene-hydrogel heterostructures for electronic skin sensors with ultrabroad working range[J]. Science Advances,2020,6(48):eabb5367. doi: 10.1126/sciadv.abb5367
    [31] Li X, He L, Li Y, et al. Healable, degradable and conductive MXene nanocomposite hydrogel for multifunctional epidermal sensor[J]. ACS Nano,2021,15(4):7765-7773.
    [32] Li X, Lu Y L, Liu Q J. Electrochemical and optical biosensors based on multifunctional MXene nanoplatforms: Progress and prospects[J]. Talanta,2021,235:122726.
    [33] Wang Y H, Zeng Z X, Qiao J Y, et al. Ultrasensitive determination of nitrite based on electrochemical platform of AuNPs deposited on PDDA-modified MXene nanosheets[J]. Talanta,2021,221:121605.
    [34] Zhao Y, Gao W, Dai K, et al. Bioinspired multifunctional photonic-electronic smart skin for ultrasensitive health monitoring, for visual and self-powered sensing[J]. 2021, 33(45): 2102332.
    [35] Cheng Y F, Ma Y A, Li L Y, et al. Bioinspired microspines for a high-performance spray Ti3C2Tx MXene-based piezoresistive sensor[J]. ACS Nano,2020,14(2):2145-2155. doi: 10.1021/acsnano.9b08952
    [36] Gao Y J, Yu L T, Yeo J C, et al. Flexible hybrid sensors for health monitoring: Materials and mechanisms to render wearability[J]. Advanced Materials,2020,32(15):1902133. doi: 10.1002/adma.201902133
    [37] Cai Y, Shen J, Ge G, et al. Stretchable Ti3C2Tx MXene/carbon nanotube composite based strain sensor with ultrahigh sensitivity and tunable sensing range[J]. ACS Nano,2018,12(1):56-62. doi: 10.1021/acsnano.7b06251
    [38] Fan Z, Zhang L, Tan Q, et al. Wearable pressure sensor based on MXene/single-wall carbon nanotube film with crumpled structure for broad-range measurements[J]. Smart Materials and Structures,2021,30(3):035024. doi: 10.1088/1361-665X/abe030
    [39] Shi X, Wang H, Xie X, et al. Bioinspired ultrasensitive and stretchable MXene-based strain sensor via nacre-mimetic microscale "brick-and-mortar" architecture[J]. ACS Nano,2019,13(1):649-659. doi: 10.1021/acsnano.8b07805
    [40] Liao H, Guo X L, Wan P B, et al. Conductive MXene nanocomposite organohydrogel for flexible, healable, low-temperature tolerant strain sensors[J]. Advanced Functional Materials,2019,29(39):1904507.
    [41] Wu M Y, Zhang Q, Fang Y Y, et al. Polylysine-modified MXene nanosheets with highly loaded glucose oxidase as cascade nanoreactor for glucose decomposition and electrochemical sensing[J]. Journal of Colloid and Interface Science,2021,586:20-29. doi: 10.1016/j.jcis.2020.10.065
    [42] Chen S X, Shi M, Yang J, et al. MXene/carbon nanohorns decorated with conductive molecularly imprinted poly(hydroxymethyl-3, 4-ethylenedioxythiophene) for voltammetric detection of adrenaline[J]. Microchimica Acta,2021,188(12):420.
    [43] Shankar S S, Shereema R M, Rakhi R B. Electrochemical determination of adrenaline using MXene/graphite composite paste electrodes[J]. ACS Applied Materials & Interfaces,2018,10(50):43343-43351.
    [44] Cheng J, Hu K, Liu Q, et al. Electrochemical ultrasensitive detection of CYFRA21-1 using Ti(3)C(2)T(x)-MXene as enhancer and covalent organic frameworks as labels[J]. Analytical and Bioanalytical Chemistry,2021,413(9):2543-2551. doi: 10.1007/s00216-021-03212-y
    [45] Manohara Reddy Y V, Shin J H, Hwang J, et al. Fine-tuning of MXene-nickel oxide-reduced graphene oxide nanocomposite bioelectrode: Sensor for the detection of influenza virus and viral protein[J]. Biosensors and Bioelectronics,2022,214:114511. doi: 10.1016/j.bios.2022.114511
    [46] Harding C J, Huwiler S G, Somers H, et al. A lysozyme with altered substrate specificity facilitates prey cell exit by the periplasmic predator Bdellovibrio bacteriovorus[J]. Nature Communications,2020,11(1):4817. doi: 10.1038/s41467-020-18139-8
    [47] Wu Y, Zheng W, Xiao Y, et al. Multifunctional, robust, and porous PHBV—GO/MXene composite membranes with good hydrophilicity, antibacterial activity, and platelet adsorption performance[J]. 2021, 13(21): 3748.
    [48] Li B, Yang Y, Wu N, et al. Bicontinuous, high-strength, and multifunctional chemical-cross-linked MXene/superaligned carbon nanotube film[J]. ACS Nano,2022,16(11):19293-19304. doi: 10.1021/acsnano.2c08678
    [49] Yang C, Luo Y, Lin H, et al. Niobium carbide MXene augmented medical implant elicits bacterial infection elimination and tissue regeneration[J]. ACS Nano,2021,15(1):1086-1099. doi: 10.1021/acsnano.0c08045
    [50] Zhou L, Zheng H, Liu Z X, et al. Conductive antibacterial hemostatic multifunctional scaffolds based on Ti3C2Tx MXene nanosheets for promoting multidrug-resistant bacteria-infected wound healing[J]. ACS Nano,2021,15(2):2468-2480. doi: 10.1021/acsnano.0c06287
    [51] Zheng K Y, Li S, Jing L, et al. Synergistic antimicrobial titanium carbide (MXene) conjugated with gold nanoclusters[J]. Advanced Healthcare Materials,2020,9(19):e2001007. doi: 10.1002/adhm.202001007
    [52] Zhu X Q, Zhu Y N, Jia K, et al. A near-infrared light-mediated antimicrobial based on Ag/Ti3C2Tx for effective synergetic antibacterial applications[J]. Nanosacle,2022,12(37):19129-19141.
    [53] Yin J, Han Q, Zhang J, et al. MXene-based hydrogels endow polyetheretherketone with effective osteogenicity and combined treatment of osteosarcoma and bacterial infection[J]. ACS Applied Materials & Interfaces,2020,12(41):45891-45903.
    [54] Liu Y X, Tian Y, Han Q Y, et al. Synergism of 2D/1D MXene/cobalt nanowire heterojunctions for boosted photo-activated antibacterial application[J]. Chemical Engineering Journal,2021,410:128209. doi: 10.1016/j.cej.2020.128209
    [55] Li J, Li Z, Liu X, et al. Interfacial engineering of Bi2S3/Ti3C2Tx MXene based on work function for rapid photo-excited bacteria-killing[J]. Nature Communications,2021,12(1):1224. doi: 10.1038/s41467-021-21435-6
    [56] Wu Z, Shi J, Song P, et al. Chitosan/hyaluronic acid based hollow microcapsules equipped with MXene/gold nanorods for synergistically enhanced near infrared responsive drug delivery[J]. International Journal of Biological Macromolecules,2021,183:870-879. doi: 10.1016/j.ijbiomac.2021.04.164
    [57] Jin L, Guo X Q, Gao D, et al. NIR-responsive MXene nanobelts for wound healing[J]. Npg Asia Materials,2021,13(1):9. doi: 10.1038/s41427-020-00268-7
    [58] Liu Y, Han Q, Yang W, et al. Two-dimensional MXene/cobalt nanowire heterojunction for controlled drug delivery and chemo-photothermal therapy[J]. Materials Science & Engineering C-Materials for Biological Applications,2020,116:111212.
    [59] Gao W, Zhang W, Yu H, et al. 3D CNT/MXene microspheres for combined photothermal/photodynamic/chemo for cancer treatment[J]. Frontiers in bioengineering and biotechnology,2022,10:996177. doi: 10.3389/fbioe.2022.996177
    [60] Li L, Lu Y, Qian Z, et al. A Ti2N MXene-based nanosystem with ultrahigh drug loading for dual-strategy synergistic oncotherapy[J]. Nanoscale,2021,13(44):18546-18557. doi: 10.1039/D1NR04008A
    [61] Fusco L, Gazzi A, Peng G, et al. Graphene and other 2D materials: A multidisciplinary analysis to uncover the hidden potential as cancer theranostics[J]. Theranostics,2020,10(12):5435-5488. doi: 10.7150/thno.40068
    [62] Zhang Y, Guo Z, Zhu H, et al. Synthesis of liquid gallium@reduced graphene oxide core-shell nanoparticles with enhanced photoacoustic and photothermal performance[J]. Journal of the American Chemical Society,2022,144(15):6779-6790. doi: 10.1021/jacs.2c00162
    [63] Zada S, Dai W H, Kai Z, et al. Algae extraction controllable delamination of vanadium carbide nanosheets with enhanced near-infrared photothermal performance[J]. Angewandte Chemie-International Edition,2020,59(16):6601-6606. doi: 10.1002/anie.201916748
    [64] Liu Z, Lin H, Zhao M, et al. 2D superparamagnetic tantalum carbide composite MXenes for efficient breast-cancer theranostics[J]. Theranostics,2018,8(6):1648-1664. doi: 10.7150/thno.23369
    [65] Dai C, Chen Y, Jing X, et al. Two-dimensional tantalum carbide (MXenes) composite nanosheets for multiple imaging-guided photothermal tumor ablation[J]. ACS Nano,2017,11(12):12696-12712. doi: 10.1021/acsnano.7b07241
    [66] Tang W, Dong Z, Zhang R, et al. Multifunctional two-dimensional core-shell MXene@gold nanocomposites for enhanced photo-radio combined therapy in the second biological window[J]. ACS Nano,2019,13(1):284-294. doi: 10.1021/acsnano.8b05982
    [67] Han X, Huang J, Lin H, et al. 2D ultrathin MXene-based drug-delivery nanoplatform for synergistic photothermal ablation and chemotherapy of cancer[J]. Advanced Healthcare Materials,2018,7(9):e1701394. doi: 10.1002/adhm.201701394
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  483
  • HTML全文浏览量:  155
  • PDF下载量:  117
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-01
  • 录用日期:  2023-03-06
  • 修回日期:  2023-03-04
  • 网络出版日期:  2023-03-13
  • 刊出日期:  2023-06-01

目录

    /

    返回文章
    返回