留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Advances in the use of carbonaceous scaffolds for constructing stable composite Li metal anodes

CHEN Yue ZHAO Lu-kang ZHOU Jun-long BIAN Yu-hua GAO Xuan-wen CHEN Hong LIU Zhao-meng LUO Wen-bin

陈粤, 赵鲁康, 周俊龙, 边煜华, 高宣雯, 陈红, 刘朝孟, 骆文彬. 碳基支架在构建稳定复合锂金属阳极方面的研究进展. 新型炭材料(中英文), 2023, 38(4): 698-724. doi: 10.1016/S1872-5805(23)60734-6
引用本文: 陈粤, 赵鲁康, 周俊龙, 边煜华, 高宣雯, 陈红, 刘朝孟, 骆文彬. 碳基支架在构建稳定复合锂金属阳极方面的研究进展. 新型炭材料(中英文), 2023, 38(4): 698-724. doi: 10.1016/S1872-5805(23)60734-6
CHEN Yue, ZHAO Lu-kang, ZHOU Jun-long, BIAN Yu-hua, GAO Xuan-wen, CHEN Hong, LIU Zhao-meng, LUO Wen-bin. Advances in the use of carbonaceous scaffolds for constructing stable composite Li metal anodes. New Carbon Mater., 2023, 38(4): 698-724. doi: 10.1016/S1872-5805(23)60734-6
Citation: CHEN Yue, ZHAO Lu-kang, ZHOU Jun-long, BIAN Yu-hua, GAO Xuan-wen, CHEN Hong, LIU Zhao-meng, LUO Wen-bin. Advances in the use of carbonaceous scaffolds for constructing stable composite Li metal anodes. New Carbon Mater., 2023, 38(4): 698-724. doi: 10.1016/S1872-5805(23)60734-6

碳基支架在构建稳定复合锂金属阳极方面的研究进展

doi: 10.1016/S1872-5805(23)60734-6
基金项目: 中国国家自然科学基金面上项目(No.52272194)、辽宁省“兴辽英才”青年拔尖人才计划(No.XLYC2007155)以及中央高校基本科研业务费专项资金(No.N2025018、N2025009)的支持
详细信息
    通讯作者:

    高宣雯,博士,副教授. E-mail:gaoxuanwen@mail.neu.edu.cn

    骆文彬,博士,教授. E-mail:luowenbin@smm.neu.edu.cn

  • 中图分类号: TQ152

Advances in the use of carbonaceous scaffolds for constructing stable composite Li metal anodes

Funds: This work was supported by the National Natural Science Foundation of China (52272194), Liaoning Revitalization Talents Program (XLYC2007155), the Fundamental Research Funds for the Central Universities (N2025018, N2025009). This manuscript was written through the contributions of all the authors. All authors have given approval to the final version of the manuscript
More Information
  • 摘要: 因为锂金属电池(LMBs)具有高能量密度、高理论比容量和低氧化电位等优点,被认为是后锂离子电池(LIBs)中理想的能量存储装置之一。然而,锂金属阳极(LMA)面临着多种障碍,包括低库仑效率(CE)、大体积膨胀、锂枝晶的形成、低安全和低稳定性及短寿命,这些问题阻碍了LMBs的实际应用。由于低密度、高机械强度、稳定的化学性质和大比表面积等优势,碳基材料受到了广泛关注。建立复合碳基LMA是各种策略中的一种有效选择,因为其具有缓解体积膨胀、降低局部电流密度以及提供均匀Li+沉积的活性成核位点的能力。本文综述了复合碳基LMA的最新研究进展,包括碳基复合材料、元素金属及其化合物与碳基材料的复合物,以及它们与阳极界面稳定性和结构的关系。最后,本文总结并提出了关于将碳基材料作为LMA支架的观点和见解。
  • FIG. 2502.  FIG. 2502.

    FIG. 2502..  FIG. 2502.

    Figure  1.  Carbon-based materials in LMBs as 3D current scaffolds

    Figure  2.  (a) Schematic diagram of the production steps of S-3DG/S and the transmission path and framework of Li and electrons[66]. (b) Schematic of LMA: nanoporous N-doped graphene synthesis[71]. (c) Li foil, graphene-Li, and N-doped graphene-Li symmetrical cells with 1 mAh cm−2 stripping/plating capacity and 1 mA cm−2 current density and voltage characteristics[71]. (d) Schematic diagram of 3DCu@NG manufacturing[72]. (e) The production steps of the NCNT-CC film[73]. (f) Schematic diagram of the deposition behavior of lithium deposition on CF and NOCA@CF[75]. (g) Schematic diagram of the NPCQP-900 synthesis process[76]. (h) Adsorption energy doped with carbon and lithium atoms[76]. ( Reprinted with permission )

    Figure  3.  (a) Graphical depiction of the NSC@Ni synthesis method[81]. (b) Optimal configuration of lithium atoms adsorbed at PlN, PdN, PlN-S and PdN-S sites[81]. (c) The fabrication process of PGCF-Li[82]. (d)The SEM image of PGCF-Li is 10 mAh cm−2[82]. (e) Dual-function schematic diagram of a carbon surface with an electron-deficient structure[83]. (f) Physical characterization of the CNT sponge in HRTEM images[84]. (g) Morphology of carbon nanotube sponge during lithium plating/stripping: schematic representation of lithium discharged to carbon nanotube sponge’s electrochemical plating/stripping process[84]. ( Reprinted with permission )

    Figure  4.  (a) A diagrammatic representation of the nanoseeding approach for the homogeneous deposition of lithium metal on a 3D host material Joule heat anchors AgNPs evenly to the CNF substrate, which is responsible for Li deposition and growth. Thus, lithium metal is guided into the 3D substrate to generate a homogeneous lithium anode[91]. (b) Schematic diagram of the 3D-AGBN host preparation process with the layered characteristics of the solution[94]. (c) The Li plating/stripping process within the Au@aCNT is shown in the TEM snapshot and the corresponding schematic[96]. (d) Schematic of embedded AuNP entering the interior of the tube by breaking through the separation layer upon lithiation[96]. (e) Li is directed deposition to the bottom of the Li/AuCF anode[97]. (f) Formation of multi-dimensional structures through deposition of single Zn atoms[98]. (g) A Schematic representation of the difference in electron density and surface binding energy between graphene, ZnSAs, and N-graphene[98]. ( Reprinted with permission )

    Figure  5.  (a) A diagrammatic representation of the peeling and electroplating behavior lithium foil in a planar form and Li@NRA-CC electrode, mechanisms of breakdown by pitting corrosion, SEI fracture, and dendritic growth, and it describes the synergistic influence of interconnected 3D CC and Co-N-C NRAs on lithium stripping/plating behavior[108]. (b) Process flow diagram for the production of OCCu-Li electrode[109]. (c) Schematic of synthetic procedures of VO2-CNT/CNF@Li electrode[111]. (d) Schematic diagram of the NiS@C-HS manufacturing process[112]. (e) Schematic of the sulfur hosts NiS@C-HS and typical C-HS@NiS[112]. (f) Voltage profiles during initial Li plating on different substrates at 1 mA cm−2[113]. ( Reprinted with permission )

    Figure  6.  (a) Describe the first-principles calculation of CP binding energy[114]. (b) CP electrodes CE at 1 mA cm−2 and 1 mAh cm−2 at different current densities and different capacities[114] . (c) SEM image of surface topography after Li@NF 100 cycles at 1 mA cm−2[115]. (d) High-resolution XPS spectra of N 1s for CNT-CoP@NC[116]. (e) Lithium nucleation and electroplating process diagram on the Cu foil and CNT-CoP@NC electrode[116]. (f) Process diagram of the preparation process of the CC/Li/Li3N composite electrode[117]. (g) NZP/NF synthesis process diagram[119]. (h) A diagrammatic representation of the preparation process of LiCu3P/CoP@C/CNT[120]. ( Reprinted with permission )

    Figure  7.  (a) A diagrammatic representation of the reaction mechanism of Li-Ti3C2Tx-CC with a bare lithium electrode[126]. (b) Diagram of lithium plating on MXene@CNF film[127]. (c) Schematic diagram of the lithium stripping/plating process of AlF3@CNF interlayer. A potential gradient (∆E) is formed as the resistance between layers increases[128]. (d) Schematic diagram of lithium metal deposition on BGCF[129]. ( Reprinted with permission )

    Figure  8.  (a) schematic process of the Li plating on bare CuNW and GDY@CuNW current collectors[135]. (b) impedance variations at different cycles (1.0 mA cm−2 , 1.0 mAh cm−2 )[135]. (c) Raman spectra of GDY and Ni/GDY[136]. (d) Under the conditions of 1 mAh cm−2/1 mA cm−2, the Li plating and stripping efffciency of Ni/GDY electrodes[136]. (e) Schematic lithium plating on bare Cu foil and Cu-GDY NWs[137]. (f) Cycling performance of full cells with LFP at 0.5 C[137]. ( Reprinted with permission )

    Figure  9.  Mechanism of carbonceous scaffolds in LMBs

    Table  1.   Performance of LMBs using carbonaceous scaffolds as 3D current collectors

    Current collectorHalf cell performance
    (Cycle Number/h, CE)
    Operating conditions (Current censity/(mA cm−2),
    Areal capacity/(mAh cm−2))
    Refs
    3D-printed GO frameworks300, 95.5%1, 1[65]
    Sulfur doped 3D graphene/sulfur particles100, 93.9%0.5, 1[66]
    N-doped graphene modified 3D porous Cu50, 97.0%1, 2[72]
    N-doped carbon nanotube modified carbon cloth400, 99.7%1, 1[73]
    N/O dual-doped 3D porous carbon350, 95.7%1, 1[75]
    N, P dual-doped carbon200, 97.5%1, 1[76]
    3D N, O co-doped carbon nanosphere600, 98.2%0.5, 0.5[80]
    CNT sponge as a 3D porous90, 98.5%1, 2[84]
    下载: 导出CSV

    Table  2.   Performance of LMBs using elemental metal composite as 3D current collectors

    Current collectorHalf cell performance
    (Cycle number/h,CE)
    Operating conditions (Current density/(mA cm−2),
    Areal capacity/(mAh cm−2))
    Refs
    Silver nanowireand graphene-based hierarchical host
    with a binary network structure
    50, 97.3%1, 6[94]
    Zn single-atom250, 100%1, 2[98]
    下载: 导出CSV

    Table  3.   Performance of LMBs using composite with metallic oxygen/sulphur/selenium compounds as 3D current collectors

    Current collectorHalf cell performance
    (Cycle number/h,CE)
    Operating conditions (Current density/(mA cm−2),
    Areal capacity/(mAh cm−2))
    Refs
    Nanorod arrays modified carbon cloth100, 97.5%2, 4[108]
    Vanadium oxide modified carbon nanotube films500, 99%1, 1[111]
    3D carbon aerogel decorated with cobalt selenide nanoparticles100, 99.3%6, 6[113]
    下载: 导出CSV

    Table  4.   Performance of LMBs using composite with metal nitrides/phosphides as 3D current collectors

    Current collectorHalf cell performance
    (Cycle number/h, CE)
    Operating conditions (Current density/(mA cm−2),
    Areal capacity/(mAh cm−2))
    Refs
    Aluminum nitride nanosheets as an additive and carbon
    paper as 3D current collector
    350, 95.8%1, 1[114]
    Nitride decorated nickel foams300, 97.0%1, 3[115]
    Construction of nickel phosphide nanosheets modified with nickel foam280, 98.5%1, 1[119]
    Nitrogen-doped hollow porous polyhedron carbon400, 96.9%1, 1[116]
    下载: 导出CSV

    Table  5.   Performance of LMBs using composite with metal-carbide composites and fluoride/bromide/iodide as 3D current collectors

    Current collectorHalf cell performance
    (Cycle number/h, CE)
    Operating conditions (Current density/(mA cm−2),
    Areal capacity/(mAh cm−2))
    Reference
    Ti3C2Tx MXene films mixed with trace cellulose nanofibers200, 98.9%0.5, 2[127]
    AlF3 particles embedded within carbon nanofibers450, 97.2%1, 1[128]
    CuBr- and Br-doped graphene-like film modified
    Cu foam
    300, 98.8%2, 2[129]
    下载: 导出CSV

    Table  6.   Performance of LMBs using composite with other carbon-based forms as 3D current collectors

    Current collectorHalf cell performance
    (Cycle number/h, CE)
    Operating conditions (Current density/(mA cm−2),
    Areal capacity/(mAh cm−2))
    Reference
    The CuNW electrode modified by GDY nanofilms200, 96.5%0.5, 0.5[135]
    Ni-anchored graphdiyne modified copper foam substrate200, 98.5%1, 1[136]
    grew GDY nanofilms on a Cu nanowire network500, 99.2%1, 2[137]
    下载: 导出CSV
  • [1] Gür T M. Review of electrical energy storage technologies, materials and systems: challenges and prospects for large-scale grid storage[J]. Energy & Environmental Science,2018,11(10):2696-2767 DOI: 10.1039/C8EE01419A .
    [2] Carley S, Konisky D M. The justice and equity implications of the clean energy transition[J]. Nature Energy,2020,5(8):569-577. doi: 10.1038/s41560-020-0641-6
    [3] Friedlingstein P, O'Sullivan M, Jones M W, et al. Global carbon budget 2020[J]. Earth System Science Data,2020,12(4):3269-3340. doi: 10.5194/essd-12-3269-2020
    [4] Zhao X, Ma X, Chen B, et al. Challenges toward carbon neutrality in China: Strategies and countermeasures [J]. Resources Conservation And Recycling, 2022, 176:105959 DOI: 10.1016/j.resconrec.2021.105959.
    [5] Fleischmann S, Mitchell J B, Wang R, et al. Pseudocapacitance: From fundamental understanding to high power energy storage materials[J]. Chemical Reviews,2020,120(14):6738-6782. doi: 10.1021/acs.chemrev.0c00170
    [6] Koohi-Fayegh S, Rosen M A. A review of energy storage types, applications and recent developments[J]. Journal of Energy Storage,2020,27:101047. doi: 10.1016/j.est.2019.101047
    [7] Reddy M V, Mauger A, Julien C M, et al. Brief history of early lithium-battery development [J]. Materials, 2020, 13(8):1884 DOI: 10.3390/ma13081884.
    [8] Cheng X B, Zhang R, Zhao C Z, et al. Toward safe lithium metal anode in rechargeable batteries: A review[J]. Chemical Reviews,2017,117(15):10403-10473. doi: 10.1021/acs.chemrev.7b00115
    [9] Wang J B, Ren Z, Hou Y, et al. A review of graphene synthesisatlow temperatures by CVD methods[J]. New Carbon Materials,2020,35(3):193-208. doi: 10.1016/S1872-5805(20)60484-X
    [10] Jin L, Zhang H, Li S, et al. Exchange of li and AgNO3 enabling stable 3D lithium metal anodes with embedded lithophilic nanoparticles and a solid electrolyte interphase inducer[J]. Acs Applied Materials & Interfaces,2021,13(32):38425-38431 DOI: 10.1021/acsami.1c11733 .
    [11] Fan E, Li L, Wang Z, et al. Sustainable recycling technology for li-ion batteries and beyond: Challenges and future prospects[J]. Chemical Reviews,2020,120(14):7020-7063. doi: 10.1021/acs.chemrev.9b00535
    [12] Wu F, Maier J, Yu Y. Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries[J]. Chemical Society Reviews,2020,49(5):1569-1614. doi: 10.1039/C7CS00863E
    [13] Zhang Y, Zuo T T, Popovic J, et al. Towards better Li metal anodes: Challenges and strategies[J]. Materials Today,2020,33:56-74. doi: 10.1016/j.mattod.2019.09.018
    [14] Liang Y, Xiao Y, Yan C, et al. A bifunctional ethylene-vinyl acetate copolymer protective layer for dendrites-free lithium metal anodes[J]. Journal of Energy Chemistry,2020,48:203-207. doi: 10.1016/j.jechem.2020.01.027
    [15] Zhang C, Huang Z, Lv W, et al. Carbon enables the practical use of lithium metal in a battery[J]. Carbon,2017,123:744-755. doi: 10.1016/j.carbon.2017.08.027
    [16] Chen T, Wu H P, Wan J, et al. Synthetic poly-dioxolane as universal solid electrolyte interphase for stable lithium metal anodes[J]. Journal of Energy Chemistry,2021,62:172-178. doi: 10.1016/j.jechem.2021.03.018
    [17] Wang Z, Qi F, Yin L, et al. An anion-tuned solid electrolyte interphase with fast ion transfer kinetics for stable lithium anodes [J]. Advanced Energy Materials, 2020, 10(14):1903843 DOI: 10.1002/aenm.201903843.
    [18] Qian H, Li X. Progress in functional solid electrolyte interphases for boosting li metal anode [J]. Acta Physico-Chimica Sinica, 2021, 37(2).
    [19] Zhang X L, Ruan Z Q, He Q T, et al. Three-dimensional (3D) nanostructured skeleton substrate composed of hollow carbon fiber/carbon nanosheet/ZnO for stable lithium anode[J]. ACS Applied Materials & Interfaces,2021,13(2):3078-3088.
    [20] Wu H, Jia H, Wang C, et al. Recent progress in understanding solid electrolyte interphase on lithium metal anodes[J]. Advanced Energy Materials,2021,11(5):1-15.
    [21] Zhai P, Wang T, Jiang H, et al. 3D artificial solid-electrolyte interphase for lithium metal anodes enabled by insulator-metal-insulator layered heterostructures[J]. Advanced Materials,2021,33(13):2006247. doi: 10.1002/adma.202006247
    [22] Lu Q, Jie Y, Meng X, et al. Carbon materials for stable li metal anodes: Challenges, solutions, and outlook[J]. Carbon Energy,2021,3(6):957-975. doi: 10.1002/cey2.147
    [23] Meda U S, Lal L, Sushantha M, et al. Solid electrolyte interphase (sei), a boon or a bane for lithium batteries: A review on the recent advances [J]. Journal of Energy Storage, 2021: 103564 DOI: 10.1016/j.est.2021.103564.
    [24] Shan X, Zhong Y, Zhang L, et al. A brief review on solid electrolyte interphase composition characterization technology for lithium metal batteries: Challenges and perspectives[J]. Journal Of Physical Chemistry C,2021,125(35):19060-19080. doi: 10.1021/acs.jpcc.1c06277
    [25] Yan T, Li F, Xu C, et al. Highly uniform lithiated nafion thin coating on separator as an artificial SEI layer of lithium metal anode toward suppressed dendrite growth[J]. Electrochimica Acta,2022,410:140004. doi: 10.1016/j.electacta.2022.140004
    [26] Jumi K I M, Jimin O, Kim J Y, et al. Recent progress and perspectives of solid electrolytes for lithium rechargeable batteries[J]. Journal of the Korean Electrochemical Society,2019,22(3):87-103.
    [27] Nie K, Hong Y, Qiu J, et al. Interfaces between cathode and electrolyte in solid state lithium batteries: Challenges and perspectives[J]. Frontiers In Chemistry,2018,6:616. doi: 10.3389/fchem.2018.00616
    [28] Zhao C Z, Duan H, Huang J Q, et al. Designing solid-state interfaces on lithium-metal anodes: a review[J]. Science China-Chemistry,2019,62(10):1286-1299. doi: 10.1007/s11426-019-9519-9
    [29] Kang D, Xiao M, Lemmon J P. Artificial solid-electrolyte interphase for lithium metal batteries[J]. Batteries & Supercaps,2021,4(3):445-455.
    [30] Jin C B, Shi P, Zhang X Q, et al. Advances in carbon materials for stable lithium metal batteries[J]. New Carbon Materials,2022,37(1):1-24. doi: 10.1016/S1872-5805(22)60573-0
    [31] Liu Y, Zhai Y, Xia Y, et al. Recent progress of porous materials in lithium-metal batteries[J]. Small Structures,2021,2(5):2000118. doi: 10.1002/sstr.202000118
    [32] Chen L, Ding K, Li K, et al. Crystalline porous materials-based solid-state electrolytes for lithium metal batteries[J]. Energy Chem,2022,4(3):100073. doi: 10.1016/j.enchem.2022.100073
    [33] Li N, Wei W, Xie K, et al. Suppressing dendritic lithium formation using porous media in lithium metal-based batteries[J]. Nano Letters,2018,18(3):2067-2073. doi: 10.1021/acs.nanolett.8b00183
    [34] Jin C, Sheng O, Luo J, et al. 3D lithium metal embedded within lithiophilic porous matrix for stable lithium metal batteries[J]. Nano Energy,2017,37:177-186. doi: 10.1016/j.nanoen.2017.05.015
    [35] Yun Q, He Y B, Lv W, et al. Chemical dealloying derived 3D porous current collector for li metal anodes[J]. Advanced Materials,2016,28(32):6932-+. doi: 10.1002/adma.201601409
    [36] Guo C, Zhang W, Tu J, et al. Construction of 3D copper-based collector and its application in lithium metal batteries[J]. Progress In Chemistry,2022,34(2):370-383.
    [37] Chen J Y, Zhao J, Lei L N, et al. Dynamic intelligent Cu current collectors for ultrastable lithium metal anodes[J]. Nano Letters,2020,20(5):3403-3410. doi: 10.1021/acs.nanolett.0c00316
    [38] Zhang D, Dai A, Wu M, et al. Lithiophilic 3D porous cuzn current collector for stable lithium metal batteries[J]. ACS Energy Letters,2020,5(1):180-186. doi: 10.1021/acsenergylett.9b01987
    [39] Lu Z, Liang Q, Wang B, et al. Graphitic carbon nitride induced micro-electric field for dendrite-free lithium metal anodes[J]. Advanced Energy Materials,2019,9(7):1803186. doi: 10.1002/aenm.201803186
    [40] Pu J, Li J, Zhang K, et al. Conductivity and lithiophilicity gradients guide lithium deposition to mitigate short circuits[J]. Nature Communications,2019,10(1):1-10. doi: 10.1038/s41467-018-07882-8
    [41] Shang J, Yu W, Wang L, et al. Metallic glass-fiber fabrics: a new type of flexible, super-lightweight, and 3D current collector for lithium batteries[J]. Advanced Materials,2023,35:2211748.
    [42] Jin S, Jiang Y, Ji H, et al. Advanced 3D current collectors for lithium-based batteries[J]. Advanced Materials,2018,30(48):1802014. doi: 10.1002/adma.201802014
    [43] Xia Y, Hu W, Yao Y, et al. Application of electrodeposited Cu-metal nanoflake structures as 3D current collector in lithium-metal batteries[J]. Nanotechnology,2022,33(24):1361-6528.
    [44] Zhang L, Jin Q, Zhao K, et al. 3D hierarchical Cu@Ag nanostructure as a current collector for dendrite-free lithium metal anode[J]. Dalton Transactions,2022,51(43):16565-16573. doi: 10.1039/D2DT02937E
    [45] Yang S, Cheng Y, Xiao X, et al. Development and application of carbon fiber in batteries[J]. Chemical Engineering Journal,2020,384:123294. doi: 10.1016/j.cej.2019.123294
    [46] Tang K, Xiao J, Li X, et al. Advances of carbon-based materials for lithium metal anodes[J]. Frontiers In Chemistry,2020,8:595972. doi: 10.3389/fchem.2020.595972
    [47] Fu A, Wang C, Pei F, et al. Recent advances in hollow porous carbon materials for lithium-sulfur batteries[J]. Small,2019,15(10):1804786. doi: 10.1002/smll.201804786
    [48] Wu Z, Sun K, Wang Z. A review of the application of carbon materials for lithium metal batteries[J]. Batteries-Basel,2022,8(11):246. doi: 10.3390/batteries8110246
    [49] Deng W, Zhu W, Zhou X, et al. Graphene nested porous carbon current collector for lithium metal anode with ultrahigh areal capacity[J]. Energy Storage Materials,2018,15:266-273. doi: 10.1016/j.ensm.2018.05.005
    [50] Chen H, Yang Y, Boyle D T, et al. Free-standing ultrathin lithium metal–graphene oxide host foils with controllable thickness for lithium batteries[J]. Nature Energy,2021,6(8):790-798. doi: 10.1038/s41560-021-00833-6
    [51] Sun C, Liu Y, Sheng J, et al. Status and prospects of porous graphene networks for lithium-sulfur batteries[J]. Materials Horizons,2020,7(10):2487-2518. doi: 10.1039/D0MH00815J
    [52] Xu Q, Yang X, Rao M, et al. High energy density lithium metal batteries enabled by a porous graphene/MgF2 framework[J]. Energy Storage Materials,2020,26:73-82. doi: 10.1016/j.ensm.2019.12.028
    [53] Lu K, Xu H, He H, et al. Modulating reactivity and stability of metallic lithium via atomic doping[J]. Journal of Materials Chemistry A,2020,8(20):10363-10369. doi: 10.1039/D0TA02176H
    [54] Chen X, Chen X R, Hou T Z, et al. Lithiophilicity chemistry of heteroatom-doped carbon to guide uniform lithium nucleation in lithium metal anodes[J]. Science Advances,2019,5(2):eaau7728. doi: 10.1126/sciadv.aau7728
    [55] Yuan Y, Chen Z, Yu H, et al. Heteroatom-doped carbon-based materials for lithium and sodium ion batteries[J]. Energy Storage Materials,2020,32:65-90. doi: 10.1016/j.ensm.2020.07.027
    [56] Wu Y, Rahm E, Holze R. Effects of heteroatoms on electrochemical performance of electrode materials for lithium ion batteries[J]. Electrochimica Acta,2002,47(21):3491-3507. doi: 10.1016/S0013-4686(02)00317-1
    [57] Shao R, Zhu F, Cao Z, et al. Heteroatom-doped carbon networks enabling robust and flexible silicon anodes for high energy Li-ion batteries[J]. Journal of Materials Chemistry A,2020,8(35):18338-18347. doi: 10.1039/D0TA06647H
    [58] Pappas G S, Ferrari S, Huang X, et al. Heteroatom doped-carbon nanospheres as anodes in lithium ion batteries[J]. Materials,2016,9(1):35. doi: 10.3390/ma9010035
    [59] Wang Y, Yuan C, Li K, et al. Freestanding porous silicon@ heteroatom-doped porous carbon fiber anodes for high-performance lithium-ion batteries[J]. ACS Applied Energy Materials,2022,5(9):11462-11471. doi: 10.1021/acsaem.2c01898
    [60] Dai C, Sun G, Hu L, et al. Recent progress in graphene-based electrodes for flexible batteries[J]. Infomat,2020,2(3):509-526. doi: 10.1002/inf2.12039
    [61] Xu Z, Zhang P, Chen J, et al. Growth and growth mechanism of oxide nanocrystals on electrochemically exfoliated graphene for lithium storage[J]. Energy Storage Materials,2019,18:174-181. doi: 10.1016/j.ensm.2018.08.023
    [62] Seyyedin S T, Yaftian M R, Sovizi M R. Cobalt oxyhydroxide/graphene oxide nanocomposite for amelioration of electrochemical performance of lithium/sulfur batteries[J]. Journal of Solid State Electrochemistry,2017,21(3):649-656. doi: 10.1007/s10008-016-3411-4
    [63] Zhang L, Ma T, Yang Y W, et al. Pomegranate-inspired graphene parcel enables high-performance dendrite-free lithium metal anodes[J]. Advanced Science,2022,9(28):2203178. doi: 10.1002/advs.202203178
    [64] Zhang M, Shan Y, Kong Q, et al. Applications of metal-organic framework-graphene composite materials in electrochemical energy storage[J]. Flatchem,2022,32:100332. doi: 10.1016/j.flatc.2021.100332
    [65] Yang Y, Ai L, Yu S, et al. 3D-printed porous go framework enabling dendrite-free lithium-metal anodes[J]. ACS Applied Energy Materials,2022,5(12):15666-15672. doi: 10.1021/acsaem.2c03267
    [66] Li N, Gan F, Wang P, et al. In situ synthesis of 3D sulfur-doped graphene/sulfur as a cathode material for lithium-sulfur batteries[J]. Journal of Alloys and Compounds,2018,754:64-71. doi: 10.1016/j.jallcom.2018.04.018
    [67] Zhu J, Tu W, Pan H, et al. Self-templating synthesis of hollow Co3O4 nanoparticles embedded in N, S-dual-doped reduced graphene oxide for lithium ion batteries[J]. ACS Nano,2020,14(5):5780-5787. doi: 10.1021/acsnano.0c00712
    [68] Zhang F, Liu X, Yang M, et al. Novel S-doped ordered mesoporous carbon nanospheres toward advanced lithium metal anodes[J]. Nano Energy,2020,69:104443. doi: 10.1016/j.nanoen.2019.104443
    [69] Choi Y J, Lee G W, Kim Y H, et al. Microspherical assembly of selectively pyridinic N-doped nanoperforated graphene for stable Li-metal anodes: Synergistic coupling of lithiophilic pyridinic N on perforation edges and low tortuosity via graphene nanoperforation[J]. Chemical Engineering Journal,2023,455:140770. doi: 10.1016/j.cej.2022.140770
    [70] Fang Y, Hsieh Y Y, Khosravifar M, et al. Lithiophilic current collector based on nitrogen doped carbon nanotubes and three-dimensional graphene for long-life lithium metal batteries[J]. Materials Science and Engineering:B,2021,267:115067. doi: 10.1016/j.mseb.2021.115067
    [71] Huang G, Han J, Zhang F, et al. Lithiophilic 3D nanoporous nitrogen-doped graphene for dendrite-free and ultrahigh-rate lithium-metal anodes[J]. Advanced Materials,2019,31(2):1805334. doi: 10.1002/adma.201805334
    [72] Zhang R, Wen S, Wang N, et al. N-doped graphene modified 3D porous Cu current collector toward microscale homogeneous Li deposition for Li metal anodes[J]. Advanced Energy Materials,2018,8(23):1800914. doi: 10.1002/aenm.201800914
    [73] Qiao L, Zhang R, Li Y, et al. Super-assembled hierarchical and stable N-doped carbon nanotube nanoarrays for dendrite-free lithium metal batteries[J]. ACS Applied Energy Materials,2021,5(1):815-824.
    [74] Wang H, An D, Tian P, et al. Incorporating quantum-sized boron dots into 3D cross-linked rGO skeleton to enable the activity of boron anode for favorable lithium storage[J]. Chemical Engineering Journal,2021,425:130659. doi: 10.1016/j.cej.2021.130659
    [75] An Y, Tian Y, Li Y, et al. Heteroatom-doped 3D porous carbon architectures for highly stable aqueous zinc metal batteries and non-aqueous lithium metal batteries[J]. Chemical Engineering Journal,2020,400:125843. doi: 10.1016/j.cej.2020.125843
    [76] Lu C, Tian M, Wei C, et al. Synergized N, P dual-doped 3D carbon host derived from filter paper for durable lithium metal anodes[J]. Journal of Colloid and Interface Science,2023,632:1-10. doi: 10.1016/j.jcis.2022.11.022
    [77] Li H, Liu J, Zhang Y, et al. Mono-atom dispersed graphene foam with nitrogen-doped carbon nanospheres used in preparation of anode material for lithium-sulfur battery, is grown with carbon nanospheres doped with nitrogen atoms and single metal atoms, CN113104840-A [P/OL].
    [78] Wang J, Han W Q. A review of heteroatom doped materials for advanced lithium-sulfur batteries[J]. Advanced Functional Materials,2022,32(2):07166.
    [79] Wu J, Pan Z, Zhang Y, et al. The recent progress of nitrogen-doped carbon nanomaterials for electrochemical batteries[J]. Journal of Materials Chemistry A,2018,6(27):12932-12944. doi: 10.1039/C8TA03968B
    [80] Gao C, Li J, Sun K, et al. Controllable lithium deposition behavior hollow of N, O co-doped carbon nanospheres for practical lithium metal batteries[J]. Chemical Engineering Journal,2021,412:128721. doi: 10.1016/j.cej.2021.128721
    [81] Tang K, Xiao J, Long M, et al. Superlithiophilic N, S-codoped carbon on Ni foam as a stable 3D host for dendrite-free Li metal anodes[J]. Sustainable Materials and Technologies,2022,32:e00408. doi: 10.1016/j.susmat.2022.e00408
    [82] Chen T, Jia W, Yao Z, et al. Partly lithiated graphitic carbon foam as 3D porous current collectors for dendrite-free lithium metal anodes[J]. Electrochemistry Communications,2019,107:106535. doi: 10.1016/j.elecom.2019.106535
    [83] Kwon H, Lee J H, Roh Y, et al. An electron-deficient carbon current collector for anode-free Li-metal batteries[J]. Nature Communications,2021,12(1):5537. doi: 10.1038/s41467-021-25848-1
    [84] Yang G, Li Y, Tong Y, et al. Lithium plating and stripping on carbon nanotube sponge[J]. Nano Letters,2019,19(1):494-499. doi: 10.1021/acs.nanolett.8b04376
    [85] Huang Z, Kong D, Zhang Y, et al. Vertical graphenes grown on a flexible graphite paper as an all-carbon current collector towards stable li deposition [J]. Research, 2020:7163948 DOI: 10.34133/2020/7163948.
    [86] Meng Q, Deng B, Zhang H, et al. Heterogeneous nucleation and growth of electrodeposited lithium metal on the basal plane of single-layer graphene[J]. Energy Storage Materials,2019,16:419-425. doi: 10.1016/j.ensm.2018.06.024
    [87] Zhai P, Wang T, Yang W, et al. Uniform lithium deposition assisted by single-atom doping toward high-performance lithium metal anodes [J]. Advanced Energy Materials, 2019, 9(18):1804019 DOI: 10.1002/aenm.201804019.
    [88] Ye H, Xin S, Yin Y X, et al. Stable li plating/stripping electrochemistry realized by a hybrid li reservoir in spherical carbon granules with 3D conducting skeletons[J]. Journal of the American Chemical Society,2017,139(16):5916-5922. doi: 10.1021/jacs.7b01763
    [89] Sun Y, Zhao W, Wang X, et al. Progress of carbon and metal-based three-dimensional materials for dendrite-proof and interface-compatible lithium metal anode[J]. Applied Surface Science,2022,598:153785. doi: 10.1016/j.apsusc.2022.153785
    [90] Tian B, Huang Z, Xu X, et al. Three-dimensional Ag/carbon nanotube-graphene foam for high performance dendrite free lithium/sodium metal anodes[J]. Journal of Materials Science & Technology,2023,132:50-58.
    [91] Yang C, Yao Y, He S, et al. Ultrafine silver nanoparticles for seeded lithium deposition toward stable lithium metal anode[J]. Advanced Materials,2017,29(38):1702714. doi: 10.1002/adma.201702714
    [92] Sun Q, Zhai W, Hou G, et al. In situ synthesis of a lithiophilic ag-nanoparticles-decorated 3D porous carbon framework toward dendrite-free lithium metal anodes[J]. ACS Sustainable Chemistry & Engineering,2018,6(11):15219-15227.
    [93] Hou G, Ren X, Ma X, et al. Dendrite-free Li metal anode enabled by a 3D free-standing lithiophilic nitrogen-enriched carbon sponge[J]. Journal of Power Sources,2018,386:77-84. doi: 10.1016/j.jpowsour.2018.03.049
    [94] Xue P, Liu S, Shi X, et al. A hierarchical silver-nanowire-graphene host enabling ultrahigh rates and superior long-term cycling of lithium-metal composite anodes[J]. Advanced Materials,2018,30(44):1804165. doi: 10.1002/adma.201804165
    [95] Yan K, Lu Z, Lee H W, et al. Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth[J]. Nature Energy,2016,1(3):16010. doi: 10.1038/nenergy.2016.10
    [96] Lan X, Ye W, Zheng H, et al. Encapsulating lithium and sodium inside amorphous carbon nanotubes through gold-seeded growth[J]. Nano Energy,2019,66:104178. doi: 10.1016/j.nanoen.2019.104178
    [97] Li D, Gao Y, Xie C, et al. Au-coated carbon fabric as Janus current collector for dendrite-free flexible lithium metal anode and battery[J]. Applied Physics Reviews,2022,9(1):011424. doi: 10.1063/5.0083830
    [98] Xu K, Zhu M, Wu X, et al. Dendrite-tamed deposition kinetics using single-atom Zn sites for Li metal anode[J]. Energy Storage Materials,2019,23:587-593. doi: 10.1016/j.ensm.2019.03.025
    [99] Matsui M. Study on electrochemically deposited Mg metal[J]. Journal of Power Sources,2011,196(16):7048-7055. doi: 10.1016/j.jpowsour.2010.11.141
    [100] Ling C, Banerjee D, Matsui M. Study of the electrochemical deposition of Mg in the atomic level: Why it prefers the non-dendritic morphology[J]. Electrochimica Acta,2012,76:270-274. doi: 10.1016/j.electacta.2012.05.001
    [101] Ding Y, Hu L, He D, et al. Design of multishell microsphere of transition metal oxides/carbon composites for lithium ion battery[J]. Chemical Engineering Journal,2020,380:122489. doi: 10.1016/j.cej.2019.122489
    [102] Tan X, Wu Y, Lin X, et al. Application of MOF-derived transition metal oxides and composites as anodes for lithium-ion batteries[J]. Inorganic Chemistry Frontiers,2020,7(24):4939-4955. doi: 10.1039/D0QI00929F
    [103] Reddy R C K, Lin J, Chen Y, et al. Progress of nanostructured metal oxides derived from metal-organic frameworks as anode materials for lithium-ion batteries[J]. Coordination Chemistry Reviews,2020,420:213434. doi: 10.1016/j.ccr.2020.213434
    [104] Yu B, Tao T, Mateti S, et al. Nanoflake arrays of lithiophilic metal oxides for the ultra-stable anodes of lithium-metal batteries[J]. Advanced Functional Materials,2018,28(36):1803023. doi: 10.1002/adfm.201803023
    [105] Yu Z, Qu X, Dou A, et al. Carbon-coated cation-disordered rocksalt-type transition metal oxide composites for high energy Li-ion batteries[J]. Ceramics International,2021,47(2):1758-1765. doi: 10.1016/j.ceramint.2020.09.001
    [106] Xiang M, Wu H, Liu H, et al. A flexible 3D multifunctional MgO-decorated carbon foam@ CNTs hybrid as self-supported cathode for high-performance lithium-sulfur batteries[J]. Advanced Functional Materials,2017,27(37):1702573. doi: 10.1002/adfm.201702573
    [107] Zhang Y, Liu B, Hitz E, et al. A carbon-based 3D current collector with surface protection for Li metal anode[J]. Nano Research,2017,10(4):1356-1365. doi: 10.1007/s12274-017-1461-2
    [108] Wang T S, Liu X, Wang Y, et al. High areal capacity dendrite-free li anode enabled by metal-organic framework-derived nanorod array modified carbon cloth for solid state li metal batteries[J]. Advanced Functional Materials,2021,31(2):2001973. doi: 10.1002/adfm.202001973
    [109] Yue X Y, Bao J, Qiu Q Q, et al. Copper decorated ultralight 3D carbon skeleton derived from soybean oil for dendrite-free Li metal anode[J]. Chemical Engineering Journal,2020,391:123516. doi: 10.1016/j.cej.2019.123516
    [110] Zeng L, Zhou T, Xu X, et al. General construction of lithiophilic 3D skeleton for dendrite-free lithium metal anode via a versatile MOF-derived route[J]. Science China-Materials,2022,65(2):337-348. doi: 10.1007/s40843-021-1764-x
    [111] Xu C, Wang H, Liu X, et al. Lithiophilic vanadium oxide coated three-dimensional carbon network design towards stable lithium metal anode[J]. Journal of Power Sources,2023,562:232778. doi: 10.1016/j.jpowsour.2023.232778
    [112] Ye C, Zhang L, Guo C, et al. A 3D hybrid of chemically coupled nickel sulfide and hollow carbon spheres for high performance lithium-sulfur batteries[J]. Advanced Functional Materials,2017,27(33):1702524. doi: 10.1002/adfm.201702524
    [113] He J, Manthiram A. 3D CoSe@ C aerogel as a host for dendrite-free lithium-metal anode and efficient sulfur cathode in Li-S full cells[J]. Advanced Energy Materials,2020,10(41):2002654. doi: 10.1002/aenm.202002654
    [114] Gao C, Hong B, Sun K, et al. Self-suppression of lithium dendrite with aluminum nitride nanoflake additive in 3D carbon paper for lithium metal batteries[J]. Energy Technology,2020,8(7):1901463. doi: 10.1002/ente.201901463
    [115] Zhu J, Chen J, Luo Y, et al. Lithiophilic metallic nitrides modified nickel foam by plasma for stable lithium metal anode[J]. Energy Storage Materials,2019,23:539-546. doi: 10.1016/j.ensm.2019.04.005
    [116] Song Z, Liu Y, Wang Z, et al. Synergistic modulation of Li nucleation/growth enabled by CNTs-wrapped lithiophilic CoP/Co2P decorated hollow carbon polyhedron host for stable lithium metal anodes [J]. Nano Research, 2023:4961–4969 DOI: 10.1007/s12274-022-5179-4.
    [117] Cao W, Chen W, Lu M, et al. In situ generation of Li3N concentration gradient in 3D carbon-based lithium anodes towards highly-stable lithium metal batteries[J]. Journal of Energy Chemistry,2023,76:648-656. doi: 10.1016/j.jechem.2022.09.025
    [118] Luo L, Li J, Yaghoobnejad Asl H, et al. A 3D lithiophilic Mo2N-modified carbon nanofiber architecture for dendrite-free lithium-metal anodes in a full cell[J]. Advanced Materials,2019,31(48):1904537. doi: 10.1002/adma.201904537
    [119] Wang Z, Wang J, Mao Q, et al. Uniform lithium deposition and dissolution via metallic phosphides medium for stable cycling lithium metal batteries[J]. Chemical Engineering Journal,2021,407:126861. doi: 10.1016/j.cej.2020.126861
    [120] Zhang X, Jin S, Seo M H, et al. Hierarchical porous structure construction for highly stable self-supporting lithium metal anode[J]. Nano Energy,2022,93:106905. doi: 10.1016/j.nanoen.2021.106905
    [121] Zhang W, Jin H, Du Y, et al. Sulfur and nitrogen codoped Nb2C MXene for dendrite-free lithium metal battery[J]. Electrochimica Acta,2021,390:138812. doi: 10.1016/j.electacta.2021.138812
    [122] Shi H, Yue M, Zhang C J, et al. 3D flexible, conductive, and recyclable Ti3C2Tx mxene-melamine foam for high-areal-capacity and long-lifetime alkali-metal anode[J]. ACS Nano,2020,14(7):8678-8688. doi: 10.1021/acsnano.0c03042
    [123] Tian Y, An Y, Wei C, et al. Flexible and free-standing Ti3C2Tx mxene@zn paper for dendrite-free aqueous zinc metal batteries and nonaqueous lithium metal batteries[J]. ACS Nano,2019,13(10):11676-11685. doi: 10.1021/acsnano.9b05599
    [124] Chen Q, Wei Y, Zhang X, et al. Vertically aligned mxene nanosheet arrays for high-rate lithium metal anodes[J]. Advanced Energy Materials,2022,12(18):2200072. doi: 10.1002/aenm.202200072
    [125] Shen Y, Pu Z, Zhang Y, et al. MXene/ZnO flexible freestanding film as a dendrite-free support in lithium metal batteries[J]. Journal of Materials Chemistry A,2022,10(33):17199-17207. doi: 10.1039/D2TA04797G
    [126] Fang Y Z, Liang S, Zhang X, et al. Li (110) lattice plane evolution induced by a 3D MXene skeleton for stable lithium metal anodes[J]. Chemical Communications,2022,58(67):9373-9376. doi: 10.1039/D2CC03288K
    [127] Wang C Y, Zheng Z J, Feng Y Q, et al. Topological design of ultrastrong MXene paper hosted Li enables ultrathin and fully flexible lithium metal batteries[J]. Nano Energy,2020,74:104817. doi: 10.1016/j.nanoen.2020.104817
    [128] Guo C, Yang H, Naveed A, et al. AlF 3-Modified carbon nanofibers as a multifunctional 3D interlayer for stable lithium metal anodes[J]. Chemical Communications,2018,54(60):8347-8350. doi: 10.1039/C8CC04422H
    [129] Duan H, Zhang J, Chen X, et al. Uniform nucleation of lithium in 3D current collectors via bromide intermediates for stable cycling lithium metal batteries[J]. Journal of the American Chemical Society,2018,140(51):18051-18057. doi: 10.1021/jacs.8b10488
    [130] Shi H, Zhang C J, Lu P, et al. Conducting and lithiophilic mxene/graphene framework for high-capacity, dendrite-free lithium-metal anodes[J]. ACS Nano,2019,13(12):14308-14318. doi: 10.1021/acsnano.9b07710
    [131] Xia Y, Mathis T S, Zhao M Q, et al. Thickness-independent capacitance of vertically aligned liquid-crystalline MXenes[J]. Nature,2018,557(7705):409-412. doi: 10.1038/s41586-018-0109-z
    [132] Tan J, Matz J, Dong P, et al. A growing appreciation for the role of lif in the solid electrolyte interphase[J]. Advanced Energy Materials,2021,11(16):2100046. doi: 10.1002/aenm.202100046
    [133] Zhao J, Liao L, Shi F, et al. Surface fluorination of reactive battery anode materials for enhanced stability[J]. Journal of the American Chemical Society,2017,139(33):11550-11558. doi: 10.1021/jacs.7b05251
    [134] Liu Z, He B, Zhang Z, et al. Lithium/graphene composite anode with 3D structural lif protection layer for high-performance lithium metal batteries[J]. ACS Applied Materials & Interfaces,2022,14(2):2871-2880.
    [135] Shang H, Zuo Z, Li Y. Highly lithiophilic graphdiyne nanofilm on 3D free-standing Cu nanowires for high-energy-density electrodes[J]. ACS Applied Materials & Interfaces,2019,11(19):17678-17685.
    [136] Kang H, Hua B, Gao P, et al. Ni/Graphdiyne composites inhibit dendrite growth in lithium metal anodes[J]. Electrochimica Acta,2023,440:141744. doi: 10.1016/j.electacta.2022.141744
    [137] Zhu M, Yin C, Wang Q, et al. Columnar lithium deposition guided by graphdiyne nanowalls toward a stable lithium metal anode[J]. ACS Applied Materials & Interfaces,2022,14(50):55700-55708.
  • 加载中
图(10) / 表(6)
计量
  • 文章访问数:  442
  • HTML全文浏览量:  137
  • PDF下载量:  130
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-15
  • 录用日期:  2023-03-24
  • 修回日期:  2023-03-23
  • 网络出版日期:  2023-03-31
  • 刊出日期:  2023-08-01

目录

    /

    返回文章
    返回