留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Flexible and lightweight graphene grown by rapid thermal processing chemical vapor deposition for thermal management in consumer electronics

Satendra Kumar Manoj Goswami Netrapal Singh Uday Deshpande Surender Kumar N. Sathish

SatendraKumar, ManojGoswami, NetrapalSingh, UdayDeshpande, SurenderKumar, N.Sathish. 快速热处理化学气相沉积法制备用于电子产品热管理的轻质柔性石墨烯. 新型炭材料(中英文), 2023, 38(3): 534-542. doi: 10.1016/S1872-5805(23)60737-1
引用本文: SatendraKumar, ManojGoswami, NetrapalSingh, UdayDeshpande, SurenderKumar, N.Sathish. 快速热处理化学气相沉积法制备用于电子产品热管理的轻质柔性石墨烯. 新型炭材料(中英文), 2023, 38(3): 534-542. doi: 10.1016/S1872-5805(23)60737-1
Satendra Kumar, Manoj Goswami, Netrapal Singh, Uday Deshpande, Surender Kumar, N. Sathish. Flexible and lightweight graphene grown by rapid thermal processing chemical vapor deposition for thermal management in consumer electronics. New Carbon Mater., 2023, 38(3): 534-542. doi: 10.1016/S1872-5805(23)60737-1
Citation: Satendra Kumar, Manoj Goswami, Netrapal Singh, Uday Deshpande, Surender Kumar, N. Sathish. Flexible and lightweight graphene grown by rapid thermal processing chemical vapor deposition for thermal management in consumer electronics. New Carbon Mater., 2023, 38(3): 534-542. doi: 10.1016/S1872-5805(23)60737-1

快速热处理化学气相沉积法制备用于电子产品热管理的轻质柔性石墨烯

doi: 10.1016/S1872-5805(23)60737-1
详细信息
    通讯作者:

    Surender Kumar. E-mail: surender@ampri.res.in, surenderjanagal@gmail.com

    N. Sathish. E-mail: sathishrn@gmail.com

  • 中图分类号: TQ127.1+1

Flexible and lightweight graphene grown by rapid thermal processing chemical vapor deposition for thermal management in consumer electronics

More Information
  • 摘要: 下一代电子产品的飞速发展对热管理提出了更高的要求。初始石墨烯的导热性是铜的13倍。本文通过快速热处理化学气相沉积(RTP-CVD)法制备了具有大sp2结构域的单层、双层和多层石墨烯(SLG、BLG、FLG),进一步通过低浓度H2还原制备了高导热石墨烯。在1 000 °C下生长25 min制备出SLG,利用拉曼光谱和透射电子显微镜(TEM)研究了石墨烯的品质。为了验证RTP-CVD法生成的石墨烯的散热能力,将其作为2TB固态硬盘的散热器,通过红外热成像仪进行了研究。结果证明,RTP-CVD生长的石墨烯用于消费电子产品的热管理测试时性能表现优异。SLG显示温度(最高)比商用铜散热器低5 °C,SLG的散热能力比商用铜散热器快200倍左右。综上,利用RTP-CVD法制备的轻质的柔性石墨烯可以成为下一代5G设备和消费电子产品热管理的更好选择。
  • FIG. 2365.  FIG. 2365.

    FIG. 2365..  FIG. 2365.

    Figure  1.  Schematic representation of graphene transfer on TEM Cu grid

    Figure  2.  (a) The schematic representation of chemisorption/deposition of graphene on copper foil. Stage-I: dissociative dehydrogenation of CH4, Stage-II: dimerization, Stage-III & Stage-IV: trimerization and migration, and Stage-V: growth of graphene. FE-SEM images of (b) Ar-70, (c) Ar-80 and (d) Ar-100 samples

    Figure  3.  (a) Stacked Raman spectra of Ar-70, Ar-80 and Ar-100 with the I2D/IG ratio. (b, c, d) G-band (ωG), 2D-band (ω2D), and native oxide Raman spectra for Ar-70. (e, g) and (f, h) is the G- and 2D-band spectra for Ar-80 and Ar-100, respectively. The G-band position, 2D-band position, and FWHM (ωFWHM) are in cm−1

    Figure  4.  Two-dimensional plots of Raman mapping of (a, d, g) G-band, (b, e, h) 2D-band, and (c, f, i) I2D/IG ratio for Ar-70, Ar-80 and Ar-100, respectively

    Figure  5.  (a, b) High-resolution TEM images, (c) schematic of graphene lattice with defects, and (d) SAED pattern of Ar-70. (e, f) High-resolution TEM images, (g) schematic of graphene lattice with defects, and (h) SAED pattern of Ar-80. (i, j) High-resolution TEM images, (k) BLG edges, and (l) SAED pattern of Ar-100

    Figure  6.  High-resolution XPS spectra of (a) C1s, (b) O1s of Ar-100 sample, (c) atomic percentage comparison of C1s, O1s, and Cu2p, and (d) spectra of Cu2p

    Figure  7.  (a) Raman spectrum, (b, c) high-resolution TEM, and (c) SAED pattern of SLG

    Figure  8.  (a) Photographs of 2 TB SSD (108 (L) mm×34 (w) mm×11.5 (H) mm) with RTP-CVD graphene and commercial aluminium heat sink. (b) Temperature versus time profile of various heat sinks. Demonstration photographs of (c) a thermal IR camera with SLG and (d) commercial copper heat sink

  • [1] Kercher D S, Lee J B, Brand O, et al. Microjet cooling devices for thermal management of electronics[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology,2003,26:359-366. doi: 10.1109/TCAPT.2003.815116
    [2] Molina-Jordá J M. Nano- and micro-/meso-scale engineered magnesium/diamond composites: Novel materials for emerging challenges in thermal management[J]. Acta Materialia,2015,96:101-110. doi: 10.1016/j.actamat.2015.06.003
    [3] Li H L, Wu X, Cheng K, et al. One-pot modified “grafting-welding” preparation of graphene/ polyimide carbon films for superior thermal management[J]. New Carbon Materials,2021,36:949-960. doi: 10.1016/S1872-5805(21)60076-8
    [4] Chen J, Domingue J C, Sears C L. Microbiota dysbiosis in select human cancers: Evidence of association and causality[J]. Seminars in Immunology,2017,32:25-34. doi: 10.1016/j.smim.2017.08.001
    [5] Balandin A A, Ghosh S, Bao W, et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letters,2008,8:902-907. doi: 10.1021/nl0731872
    [6] Li H L, Xiao S N, Yu H L, et al. A review of graphene-based films for heat dissipation[J]. New Carbon Materials,2021,36:897-910. doi: 10.1016/S1872-5805(21)60092-6
    [7] Dong Z J, Sun B, Zhu H, et al. A review of aligned carbon nanotube arrays and carbon/carbon composites: fabrication, thermal conduction properties and applications in thermal management[J]. New Carbon Materials,2021,36:873-896. doi: 10.1016/S1872-5805(21)60090-2
    [8] Lindsay L, Broido D A, Mingo N. Flexural phonons and thermal transport in graphene[J]. Physical Review B,2010,82:2-7.
    [9] Stankovich S, Dikin D A, Piner R D, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide[J]. Carbon,2007,45:1558-1565. doi: 10.1016/j.carbon.2007.02.034
    [10] Kim K S, Zhao Y, Jang H, et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes[J]. Nature,2009,457:706-710. doi: 10.1038/nature07719
    [11] Seah C M, Chai S P, Mohamed A R. Mechanisms of graphene growth by chemical vapour deposition on transition metals[J]. Carbon,2014,70:1-21. doi: 10.1016/j.carbon.2013.12.073
    [12] Zhang L, Hou G, Zhai W, et al. Aluminum/graphene composites with enhanced heat-dissipation properties by in-situ reduction of graphene oxide on aluminum particles[J]. Journal of Alloys and Compounds,2018,748:854-860. doi: 10.1016/j.jallcom.2018.03.237
    [13] Bin Kim C, Lee J, Cho J, et al. Thermal conductivity enhancement of reduced graphene oxide via chemical defect healing for efficient heat dissipation[J]. Carbon,2018,139:386-392. doi: 10.1016/j.carbon.2018.07.008
    [14] Rho H, Jang Y S, Bae H, et al. Fanless, porous graphene-copper composite heat sink for micro devices[J]. Scientific Reports,2021,11:1-7. doi: 10.1038/s41598-020-79139-8
    [15] Deokar G, Avila J, Razado-Colambo I, et al. Towards high quality CVD graphene growth and transfer[J]. Carbon,2015,89:82-92. doi: 10.1016/j.carbon.2015.03.017
    [16] Papon R, Pierlot C, Sharma S, et al. Optimization of CVD parameters for graphene synthesis through design of experiments[J]. Physica Status Solidi (B):Basic Research,2017,254:1-7.
    [17] Ferrari A C, Basko D M. Raman spectroscopy as a versatile tool for studying the properties of graphene[J]. Nature Nanotechnology,2013,8:235-246. doi: 10.1038/nnano.2013.46
    [18] Wahab H S, Ali S, Abdul Hussein A, et al. Synthesis and Characterization of Graphene by Raman Spectroscopy[J]. Journal of Materials Sciences and Applications,2015,1:130-135.
    [19] Ferrari A C. Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects[J]. Solid State Communication,2007,143:47-57. doi: 10.1016/j.ssc.2007.03.052
    [20] Lin Y C, Lu C C, Yeh C H, et al. Graphene annealing: How clean can it be?[J]. Nano Letters,2012,12:414-419. doi: 10.1021/nl203733r
    [21] Vlassiouk I, Smirnov S. Graphene nucleation density on copper: fundamental role of background pressure[J]. The Journal of Physical Chemistry A,2013,117:18919-18926. doi: 10.1021/jp4047648
    [22] Riikonen S, Krasheninnikov A V, Halonen L, et al. The role of stable and mobile carbon adspecies in copper-promoted graphene growth[J]. The Journal of Physical Chemistry C,2012,116:5802-5809. doi: 10.1021/jp211818s
    [23] Muñoz R, Gómez-Aleixandre C. Review of CVD synthesis of graphene[J]. Chemical Vapor Deposition,2013,19:297-322. doi: 10.1002/cvde.201300051
    [24] Zhang X, Guo X, Sun X, et al. Roles of CuO and Cu2O in graphene growth on a copper substrate[J]. Applied Surface Science,2022,576:151812. doi: 10.1016/j.apsusc.2021.151812
    [25] Sahai A, Goswami N, Kaushik S D, et al. Cu/Cu2O/CuO nanoparticles: Novel synthesis by exploding wire technique and extensive characterization[J]. Applied Surface Science,2016,390:974-983. doi: 10.1016/j.apsusc.2016.09.005
    [26] Gan Z H, Yu G Q, Tay B K, et al. Preparation and characterization of copper oxide thin films deposited by filtered cathodic vacuum arc[J]. Journal of Physics D:Applied Physics,2004,37:81-85. doi: 10.1088/0022-3727/37/1/013
  • Supporting Information2022-0087.pdf
  • 加载中
图(9)
计量
  • 文章访问数:  249
  • HTML全文浏览量:  135
  • PDF下载量:  81
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-17
  • 录用日期:  2023-02-01
  • 修回日期:  2023-01-30
  • 网络出版日期:  2023-04-11
  • 刊出日期:  2023-06-01

目录

    /

    返回文章
    返回