留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Increasing the interlaminar fracture toughness and thermal conductivity of carbon fiber/epoxy composites interleaved with carbon nanotube/polyimide composite films

ZHANG Li-li LI Xin-lian WANG Peng WEI Xing-hai JING De-qi ZHANG Xing-hua ZHANG Shou-chun

张丽丽, 李新莲, 王鹏, 魏兴海, 经德齐, 张兴华, 张寿春. 碳纳米管/共聚酰亚胺复合膜增强炭纤维/环氧树脂复合材料的层间断裂韧性和导热性. 新型炭材料(中英文), 2023, 38(3): 566-575. doi: 10.1016/S1872-5805(23)60738-3
引用本文: 张丽丽, 李新莲, 王鹏, 魏兴海, 经德齐, 张兴华, 张寿春. 碳纳米管/共聚酰亚胺复合膜增强炭纤维/环氧树脂复合材料的层间断裂韧性和导热性. 新型炭材料(中英文), 2023, 38(3): 566-575. doi: 10.1016/S1872-5805(23)60738-3
ZHANG Li-li, LI Xin-lian, WANG Peng, WEI Xing-hai, JING De-qi, ZHANG Xing-hua, ZHANG Shou-chun. Increasing the interlaminar fracture toughness and thermal conductivity of carbon fiber/epoxy composites interleaved with carbon nanotube/polyimide composite films. New Carbon Mater., 2023, 38(3): 566-575. doi: 10.1016/S1872-5805(23)60738-3
Citation: ZHANG Li-li, LI Xin-lian, WANG Peng, WEI Xing-hai, JING De-qi, ZHANG Xing-hua, ZHANG Shou-chun. Increasing the interlaminar fracture toughness and thermal conductivity of carbon fiber/epoxy composites interleaved with carbon nanotube/polyimide composite films. New Carbon Mater., 2023, 38(3): 566-575. doi: 10.1016/S1872-5805(23)60738-3

碳纳米管/共聚酰亚胺复合膜增强炭纤维/环氧树脂复合材料的层间断裂韧性和导热性

doi: 10.1016/S1872-5805(23)60738-3
基金项目: 山西省重点研发计划资助项目(202003D111002);山西省重大科技项目计划揭榜挂帅项目(202101040201003);中国科学院山西煤炭化学研究所创新基金项目(SCJC-XCL-2022-12)
详细信息
    通讯作者:

    张寿春,研究员. E-mail:zschun@sxicc.ac.cn

  • 中图分类号: TB33

Increasing the interlaminar fracture toughness and thermal conductivity of carbon fiber/epoxy composites interleaved with carbon nanotube/polyimide composite films

Funds: This work was supported by the Key Research and Development Program of Shanxi Province (202003D111002), Major Science and Technology Project in Shanxi Province (202101040201003), and the Innovation Fund Project of Shanxi Institute of Coal Chemistry, Chinese Academy of Sciences (SCJC-XCL-2022-12)
More Information
  • 摘要: 炭纤维/环氧树脂复合材料已被广泛用作航空航天领域的结构材料,但由于其沿厚度方向缺乏炭纤维增强材料,层间力学性能和面外导热性较差。本文制备了碳纳米管/共聚酰亚胺(CNT/BOH)复合膜作为增韧层,以提高炭纤维/环氧树脂层压板的层间断裂韧性和厚度方向导热性。由于BOH膜的塑性变形和CNTs的增强效应,CNT/BOH膜的引入使炭纤维/环氧树脂层压板的I型和II型层间断裂韧性分别提高260%和220%,此外,由于CNTs高的本征导热性和交联网络的形成,有效改善了层压板的厚度方向导热性。这种增韧方法为同时提高炭纤维/环氧复合材料的力学性能和导热性提供了一种有效的策略。
  • FIG. 2368.  FIG. 2368.

    FIG. 2368..  FIG. 2368.

    Figure  1.  (a) Schematic diagram of the fabrication process. Schematic diagram of (b) DCB samples and (c) ENF samples

    Figure  2.  (a) Representative mode I load-displacement curves and (b) R-curves of specimens with and without CNT/BOH films

    Figure  3.  SEM images of the fracture surface under mode I loading: (a) control, (b) BOH-0.1%CNT, (c) BOH-0.3%CNT, (d) BOH-0.4%CNT, (e) BOH-0.5%CNT, (f) BOH-1.0%CNT as interleaves

    Figure  4.  (a) Typical mode II load-displacement curves and (b) GIIC values of samples with and without CNT/BOH films

    Figure  5.  SEM images of the fracture surface under Mode II loading: (a) control, (b) BOH-0.1%CNT, (c) BOH-0.3%CNT, (d) BOH-0.4%CNT, (e) BOH-0.5%CNT, (f) BOH-1.0%CNT as interleaves

    Figure  6.  Flexural strength of laminates with and without CNT/BOH films

    Figure  7.  Thermal conductivity and diffusivity of CF/EP laminates interleaved with CNT/BOH films with different CNT contents

    Table  1.   Specifications of unidirectional carbon fiber/epoxy prepregs

    ParameterSpecifications
    Carbon fiberT700
    Resin content/%38±2
    Area density/(g/m2)150±3
    Thickness of prepreg/mm0.11
    Epoxy resinHansort@6320
    Tg of epoxy resin/°C210
    Tensile strength of epoxy resin/MPa75
    Longitudinal tensile strength of laminate/MPa1 900
    下载: 导出CSV

    Table  2.   Density, specific heat capacity, and porosity of laminates for thermal conductivity testing

    InterleafDensity/(g/cm3)Cp/ J/(g·K)Porosity/%
    Control1.6670.8920.26
    BOH1.6240.9450.21
    BOH-0.1%CNT1.6240.9490.61
    BOH-0.3%CNT1.5520.9581.40
    BOH-0.5%CNT1.6620.8982.00
    BOH-1.0%CNT1.6750.8863.20
    BOH-2.0%CNT1.6690.8884.00
    下载: 导出CSV
  • [1] Shrivastava R, Singh K K. Interlaminar fracture toughness characterization of laminated composites: A review[J]. Polymer Reviews,2020,60(3):542-93. doi: 10.1080/15583724.2019.1677708
    [2] Zeng N, Liu H Y, Gao J F, et al. Synergetic improvement of interlaminar fracture energy in carbon fiber/epoxy composites with nylon nanofiber/polycaprolactone blend interleaves[J]. Composites Part B: Engineering,2019,171:320-328. doi: 10.1016/j.compositesb.2019.05.004
    [3] Kim J K, Mai Y W. High strength, high fracture toughness fibre composites with interface control—A review[J]. Composites Science and Technology,1991,41(4):333-378.
    [4] Zhang J, Lin T, Wang X G. Electrospun nanofibre toughened carbon/epoxy composites: Effects of polyetherketone cardo (PEK-C) nanofibre diameter and interlayer thickness[J]. Composites Science and Technology,2010,70(11):1660-1666. doi: 10.1016/j.compscitech.2010.06.019
    [5] Cai S M, Li Y, Liu H Y, et al. Effect of electrospun polysulfone/cellulose nanocrystals interleaves on the interlaminar fracture toughness of carbon fiber/epoxy composites[J]. Composites Science and Technology,2019,181:107673. doi: 10.1016/j.compscitech.2019.05.030
    [6] Wang M R, Kang Q J, Pan N. Thermal conductivity enhancement of carbon fiber composites[J]. Applied Thermal Engineering,2009,29(2):418-421.
    [7] Kumar V, Lin W H, Wang Y Q, et al. Enhanced through-thickness electrical conductivity and lightning strike damage response of interleaved vertically aligned short carbon fiber composites[J]. Composites Part B:Engineering,2023,253:110535. doi: 10.1016/j.compositesb.2023.110535
    [8] Li M H, Ali Z, Wei X Z, et al. Stress induced carbon fiber orientation for enhanced thermal conductivity of epoxy composites[J]. Composites Part B: Engineering,2021,208:108599. doi: 10.1016/j.compositesb.2020.108599
    [9] Lee E, Son I, Lee J H. Starfish surface-inspired graphene-copper metaparticles for ultrahigh vertical thermal conductivity of carbon fiber composite[J]. Composites Science and Technology,2020,199:108385. doi: 10.1016/j.compscitech.2020.108385
    [10] Rodríguez-González J A, Rubio-González C, Meneses-Nochebuena C A, et al. Enhanced interlaminar fracture toughness of unidirectional carbon fiber/epoxy composites modified with sprayed multi-walled carbon nanotubes[J]. Composite Interfaces,2017,24(9):883-896. doi: 10.1080/09276440.2017.1302279
    [11] Chen J H, Lekawa-raus A, Trevarthen J, et al. Carbon nanotube films spun from a gas phase reactor for manufacturing carbon nanotube film/carbon fibre epoxy hybrid composites for electrical applications[J]. Carbon,2020,158:282-290. doi: 10.1016/j.carbon.2019.08.078
    [12] Wang F Z, Cai X X. Improvement of mechanical properties and thermal conductivity of carbon fiber laminated composites through depositing graphene nanoplatelets on fibers[J]. Journal of Materials Science,2019,54(5):3847-3862. doi: 10.1007/s10853-018-3097-3
    [13] Guo M C, Yi X S. The production of tough, electrically conductive carbon fiber composite laminates for use in airframes[J]. Carbon,2013,58:241-244. doi: 10.1016/j.carbon.2013.02.052
    [14] Kim M G, Moon J B. Effect of CNT functionalization on crack resistance of a carbon/epoxy composite at a cryogenic temperature[J]. Composites Part A:Applied Science and Manufacturing,2012,43(9):1620-1627. doi: 10.1016/j.compositesa.2012.04.001
    [15] Xiao C F, Tan Y F, Wang X L, et al. Study on interfacial and mechanical improvement of carbon fiber/epoxy composites by depositing multi-walled carbon nanotubes on fibers[J]. Chemical Physics Letters,2018,703:8-16. doi: 10.1016/j.cplett.2018.05.012
    [16] Ei M A, Tarfaoui M, Lafdi K, et al. Dynamic properties of carbon nanotubes reinforced carbon fibers/epoxy textile composites under low velocity impact[J]. Composites Part B:Engineering,2017,125:1-8. doi: 10.1016/j.compositesb.2017.05.065
    [17] Bilisik K, Syduzzaman M. Carbon nanotubes in carbon/epoxy multiscale textile preform composites: A review[J]. Polymer Composites,2021,42(4):1670-1697. doi: 10.1002/pc.25955
    [18] Coleman J N, Khan U, Blan W J, et al. Small but strong: A review of the mechanical properties of carbon nanotube-polymer composites[J]. Carbon,2006,44(9):1624-1652. doi: 10.1016/j.carbon.2006.02.038
    [19] De Volder M F. L, Tawfick S H, Baughman R H, et al. Carbon nanotubes: Present and future commercial applications[J]. Science,2013,339(6119):535-539. doi: 10.1126/science.1222453
    [20] Quan D, Urdaniz J L, Ivankovic A. Enhancing mode-I and mode-II fracture toughness of epoxy and carbon fibre reinforced epoxy composites using multi-walled carbon nanotubes[J]. Materials & Design,2018,143:81-92.
    [21] Prasad N, Tola C, Coulaud M, et al. Carbon fiber composites based on multi-phase epoxy/pes matrices with carbon nanotubes: morphology and interlaminar fracture toughness characterization[J].  Advanced Engineering Materials,2016,18(12):2040-2046. doi: 10.1002/adem.201600153
    [22] Yao Z Q, Wang C G, Wang Y X, et al. Effect of CNTs deposition on carbon fiber followed by amination on the interfacial properties of epoxy composites[J]. Composite Structures,2022,292:115665. doi: 10.1016/j.compstruct.2022.115665
    [23] Li Z Y, Wang Y, Cao J C, et al. Effects of loading rates on mode I interlaminar fracture toughness of carbon/epoxy composite toughened by carbon nanotube films[J]. Composites Part B: Engineering,2020,200:108270. doi: 10.1016/j.compositesb.2020.108270
    [24] Khan S U, Kim J K. Improved interlaminar shear properties of multiscale carbon fiber composites with bucky paper interleaves made from carbon nanofibers[J]. Carbon,2012,50(14):5265-5277. doi: 10.1016/j.carbon.2012.07.011
    [25] Ou Y F, Gonzalez C, Vilatel J J. Interlaminar toughening in structural carbon fiber/epoxy composites interleaved with carbon nanotube veils[J]. Composites Part A: Applied Science and Manufacturing,2019,124:105477. doi: 10.1016/j.compositesa.2019.105477
    [26] Shin Y C, Lee W, Kim H S. Mode II interlaminar fracture toughness of carbon nanotubes/epoxy film-interleaved carbon fiber composites[J]. Composite Structures,2020,236:111808. doi: 10.1016/j.compstruct.2019.111808
    [27] Kaynan O, Atescan Y, Ozeen-yenigun E, et al. Mixed mode delamination in carbon nanotube/nanofiber interlayered composites[J]. Composites Part B:Engineering,2018,154:186-194. doi: 10.1016/j.compositesb.2018.07.032
    [28] Zhang L L, Zhang X H, Wei X H, et al. Hydroxyl-functionalized block co-polyimide enables simultaneously improved toughness and strength of tetrafunctional epoxy resin[J]. Composites Science and Technology,2022,230:109787. doi: 10.1016/j.compscitech.2022.109787
    [29] Zhu Y, Baskis C E, Adair J H. Effects of carbon nanofiller functionalization and distribution on interlaminar fracture toughness of multi-scale reinforced polymer composites[J]. Carbon,2012,50(3):1316-1331. doi: 10.1016/j.carbon.2011.11.001
    [30] Yan M J, Liu L S, Chen L, et al. Radiation resistance of carbon fiber-reinforced epoxy composites optimized synergistically by carbon nanotubes in interface area/matrix[J]. Composites Part B:Engineering,2019,172:447-457. doi: 10.1016/j.compositesb.2019.04.041
    [31] Zhang C, Ling Y Q, Zhang X Q, et al. Ultra-thin carbon fiber reinforced carbon nanotubes modified epoxy composites with superior mechanical and electrical properties for the aerospace field[J]. Composites Part A:Applied Science and Manufacturing,2022,163:107197. doi: 10.1016/j.compositesa.2022.107197
    [32] Van De W N, Reese M S, Taha M R, et al. Investigating the effects of fiber surface treatment and alignment on mechanical properties of recycled carbon fiber composites[J]. Composites Part A:Applied Science and Manufacturing,2019,119:38-47. doi: 10.1016/j.compositesa.2019.01.012
    [33] Koirala P, Van De W N, Lu H B, et al. Using ultra-thin interlaminar carbon nanotube sheets to enhance the mechanical and electrical properties of carbon fiber reinforced polymer composites[J]. Composites Part B:Engineering,2021,216:108842. doi: 10.1016/j.compositesb.2021.108842
    [34] Ravindranath P K, Roy S, Unnikrishnan V, et al. A multiscale model to study the enhancement in the compressive strength of multi-walled CNT sheet overwrapped carbon fiber composites[J]. Composite Structures,2019,219:170-178. doi: 10.1016/j.compstruct.2019.03.065
    [35] Fisher F T, Bradshaw R D, Brinson L C. Effects of nanotube waviness on the modulus of nanotube-reinforced polymers[J]. Applied Physics Letters,2002,80(24):4647-4649. doi: 10.1063/1.1487900
    [36] Hussein S I, Abd-elnaiem A M, Asafa T B, et al. Effect of incorporation of conductive fillers on mechanical properties and thermal conductivity of epoxy resin composite[J]. Applied Physics A,2018,124(7):475. doi: 10.1007/s00339-018-1890-0
  • Supporting Information2023-0019.pdf
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  357
  • HTML全文浏览量:  151
  • PDF下载量:  102
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-10
  • 录用日期:  2023-04-06
  • 修回日期:  2023-04-06
  • 网络出版日期:  2023-04-13
  • 刊出日期:  2023-06-01

目录

    /

    返回文章
    返回