留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Highly lithiophilic Ti3C2Tx-Mxene anchored on a flexible carbon foam scaffold as the basis for a dendrite-free lithium metal anode

TAO Fang-yu XIE Dan DIAO Wan-yue LIU Chang SUN Hai-zhu LI Wen-liang ZHANG Jing-ping WU Xing-long

陶芳宇, 谢丹, 刁婉月, 刘畅, 孙海珠, 李文亮, 张景萍, 吴兴隆. 高亲锂性的Ti3C2Tx-MXene锚定在柔性炭泡沫骨架上用于无枝晶锂金属负极. 新型炭材料(中英文), 2023, 38(4): 765-775. doi: 10.1016/S1872-5805(23)60739-5
引用本文: 陶芳宇, 谢丹, 刁婉月, 刘畅, 孙海珠, 李文亮, 张景萍, 吴兴隆. 高亲锂性的Ti3C2Tx-MXene锚定在柔性炭泡沫骨架上用于无枝晶锂金属负极. 新型炭材料(中英文), 2023, 38(4): 765-775. doi: 10.1016/S1872-5805(23)60739-5
TAO Fang-yu, XIE Dan, DIAO Wan-yue, LIU Chang, SUN Hai-zhu, LI Wen-liang, ZHANG Jing-ping, WU Xing-long. Highly lithiophilic Ti3C2Tx-Mxene anchored on a flexible carbon foam scaffold as the basis for a dendrite-free lithium metal anode. New Carbon Mater., 2023, 38(4): 765-775. doi: 10.1016/S1872-5805(23)60739-5
Citation: TAO Fang-yu, XIE Dan, DIAO Wan-yue, LIU Chang, SUN Hai-zhu, LI Wen-liang, ZHANG Jing-ping, WU Xing-long. Highly lithiophilic Ti3C2Tx-Mxene anchored on a flexible carbon foam scaffold as the basis for a dendrite-free lithium metal anode. New Carbon Mater., 2023, 38(4): 765-775. doi: 10.1016/S1872-5805(23)60739-5

高亲锂性的Ti3C2Tx-MXene锚定在柔性炭泡沫骨架上用于无枝晶锂金属负极

doi: 10.1016/S1872-5805(23)60739-5
基金项目: 吉林省自然科学基金(No.20220508141RC);111项目(B13013);国家自然科学基金(21873018);吉林省教育厅(JJKH20221154KJ);吉林省先进能源材料研究中心(东北师范大学)
详细信息
    通讯作者:

    李文亮,教授. E-mail:liwl926@nenu.edu.cn

    张景萍,教授. E-mail:jpzhang@nenu.edu.cn

    吴兴隆,教授. E-mail:xinglong@nenu.edu.cn

  • 中图分类号: TQ127.1+1

Highly lithiophilic Ti3C2Tx-Mxene anchored on a flexible carbon foam scaffold as the basis for a dendrite-free lithium metal anode

Funds: This work was supported by the financial support from the Natural Science Foundation of Jilin Province (20220508141RC), the 111 Project (B13013), the National Natural Science Foundation of China (21873018), the Education Department of Jilin Province (JJKH20221154KJ), Jilin Provincial Research Center of Advanced Energy Materials (Northeast Normal University)
More Information
  • 摘要: 不理想的枝晶生长、不稳定的固体电解质界面以及循环过程中锂金属体积的无限变化等问题极大地限制了锂金属电池的实际应用。作者设计了亲锂Ti3C2Tx-MXene修饰的炭泡沫(Ti3C2Tx-MX@CF)来调节锂的成核行为,有效缓解锂金属负极的体积变化,获得了高稳定的锂金属电池。其中,三维的CF骨架具有较高的比表面积,不仅降低了局部电流密度来避免浓度极化,而且为缓解循环过程中的体积膨胀提供了足够的空间。更重要的是,丰富的官能团赋予了Ti3C2Tx-MX优异的亲锂性,能够有效的降低锂成核过电位,引导锂均匀沉积而不形成锂枝晶,并使负极表面的界面保持稳定。因此,组装的Li-Ti3C2Tx-MX@CF对称电池在电流密度为4 mA cm−2,容量为1 mAh cm−2时,表现出超过2400 h的良好循环稳定性,过电位低至9 mV。此外,Li-Ti3C2Tx-MX@CF||NCM111全电池在1 C下循环330圈后仍能提供129.6 mAh g−1的容量,表明Ti3C2Tx-MX对构建稳定的锂金属负极具有重要意义。
  • FIG. 2506.  FIG. 2506.

    FIG. 2506..  FIG. 2506.

    Figure  1.  SEM images of (a) bare CF and (b) Ti3C2Tx-MX@CF. (c) Elemental mapping of Ti3C2Tx-MX@CF. (d) XRD of Ti3AlC2 precursor and Ti3C2Tx-MX. (e) Element contents obtained by XRD measurement in Ti3C2Tx-MX@CF

    Figure  2.  (a) Voltage profile of the Ti3C2Tx-MX@CF electrode at a current density of 0.5 mA cm−2 and capacity of 6 mAh cm−2. Morphology evolution of the Ti3C2Tx-MX@CF electrodes during the initial cycle of the Li plating/stripping process: After the anode was plated with (b, c) 1 mAh cm−2, (d, e) 2 mAh cm−2, and (f, g) 5 mAh cm−2 of Li metal; after stripping Li of (h, i) 2 mAh cm−2, (j, k) 4 mAh cm−2 and (l, m) charged to 0.5 V from the Ti3C2Tx-MX@CF anode

    Figure  3.  Voltage profiles of Li-CF and Li-Ti3C2Tx-MX@CF electrodes in symmetric cells at (a) 4 mA cm−2 with a plating/stripping capacity of 1 mAh cm−2 and (b) the corresponding voltage hysteresis. (c) Voltage profile of Li-CF and Li-Ti3C2Tx-MX@CF symmetric cells under a large plating/stripping capacity of 10 mAh cm−2. (d) Rate performances of Li-CF and Li-Ti3C2Tx-MX@CF symmetric cells. (e, f) Electrochemical impedance spectroscopy of Li-CF and Li-Ti3C2Tx-MX@CF symmetric cells at different cycles

    Figure  4.  Comparative coulombic efficiencies of Li plating/stripping on Ti3C2Tx-MX@CF and CF at (a) 0.5 mA cm−2, 0.5 mAh cm−2 and (b) 1 mA cm−2, 1 mAh cm−2. (c) Nucleation overpotential of Li on the Ti3C2Tx-MX@CF and CF electrode. SEM images of (d, e) Ti3C2Tx-MX@CF and (g, e) CF electrode after the 50th cycle in the charge state

    Figure  5.  (a) Rate performance of Li-Ti3C2Tx-MX@CF||NCM111 and Li-CF||NCM111 full cells at different current densities. Cycling performance of Li-Ti3C2Tx-MX@CF||NCM111 and Li-CF||NCM111 full cells at a current density of (b)1 C (1 C = 150 mAh g−1) and (c) 5 C. The top-view SEM image of (d) Li-Ti3C2Tx-MX@CF anode and (e) Li-CF in the NCM111 full cell after 50 cycles at 1 C

  • [1] Zhang N, Du L, Zhang J, et al. Self-assembled tent-like nanocavities for space-confined stable lithium metal anode[J]. Advanced Functional Materials,2023,33(16):2210862. doi: 10.1002/adfm.202210862
    [2] Yang Z, Liu W, Chen Q, et al. Ultra-smooth and dense lithium deposition toward high-performance lithium metal batteries[J]. Advanced Materials,2023,35(15):2210130.
    [3] Zhu H Y, Dong S Y, Xiong J, et al. MOF derived cobalt-nickel bimetallic phosphide (CoNiP) modified separator to enhance the polysulfide adsorption-catalysis for superior lithium-sulfur batteries[J], Journal of Colloid & Interface Science, 2023, 641: 942-949.
    [4] Xu X, Li F, Zhang D, et al. Facile construction of CoSn/Co3Sn2@C nanocages as anode for superior lithium‐/sodium‐ion storage[J]. Carbon Neutralization,2023,2:54-62. doi: 10.1002/cnl2.40
    [5] Li Y, Li J, Xiao H, et al. A novel 3D Li/Li9Al4/Li-Mg alloy anode for superior lithium metal batteries[J]. Advanced Functional Materials,2023,33(14):2213905. doi: 10.1002/adfm.202213905
    [6] Ye S, Chen X, Zhang R, et al. Revisiting the role of physical confinement and chemical regulation of 3D hosts for dendrite-free Li metal anode[J]. Nano-Micro Letters,2022,14(1):187. doi: 10.1007/s40820-022-00932-3
    [7] Wang X, Huang R Q, Niu S Z, et al. Research progress on graphene-based materials for high-performance lithium-metal batteries[J]. New Carbon Materials,2021,36(4):711-728. doi: 10.1016/S1872-5805(21)60081-1
    [8] Zhang Y J, Wang H M, Liu X, et al. A dimensionally stable lithium alloy based composite electrode for lithium metal batteries[J]. Chemical Engineering Journal,2022,450:138074. doi: 10.1016/j.cej.2022.138074
    [9] Kong Z k, Chen Y, Hua J z, et al. Ultra-thin 2D MoO2 nanosheets coupled with CNTs as efficient separator coating materials to promote the catalytic conversion of lithium polysulfides for advanced lithium-sulfur batteries[J]. New Carbon Materials,2021,36(4):810-820. doi: 10.1016/S1872-5805(21)60080-X
    [10] Zhan Y X, Shi P, Jin C B, et al. Regulating the two-stage accumulation mechanism of inactive lithium for practical composite lithium metal anodes[J]. Advanced Functional Materials,2022,32:2206834. doi: 10.1002/adfm.202206834
    [11] Qiao L, Oteo U, Martinez-Ibanez M, et al. Stable non-corrosive sulfonimide salt for 4-V-class lithium metal batteries[J]. Nature Materials,2022,21:455-462. doi: 10.1038/s41563-021-01190-1
    [12] Yu Z, Rudnicki P E, Zhang Z, et al. Rational solvent molecule tuning for high-performance lithium metal battery electrolytes[J]. Nature Energy,2022,7(1):94-106. doi: 10.1038/s41560-021-00962-y
    [13] Chen D, Liu Y, Xia C, et al. Polybenzimidazole functionalized electrolyte with Li‐wetting and self‐fluorination functionalities for practical Li metal batteries[J]. InfoMat,2021,4(5):e12247.
    [14] Sun S, Myeong S, Kim J, et al. Design of inorganic/organic bi-layered Li protection layer enabled dendrite-free practical Li metal battery[J]. Chemical Engineering Journal,2022,450:137993. doi: 10.1016/j.cej.2022.137993
    [15] Zhao J, Hong M, Ju Z, et al. Durable lithium metal anodes enabled by interfacial layers based on mechanically interlocked networks capable of energy dissipation[J]. Angewandte Chemie International Edition,2022,61:e202214386.
    [16] Yao M, Ruan Q, Wang Y, et al. A robust dual-polymer@inorganic networks composite polymer electrolyte toward ultra-long-life and high-voltage Li/Li-rich metal battery[J]. Advanced Functional Materials,2023,33(18):2213702. doi: 10.1002/adfm.202213702
    [17] Li Z, Yu R, Weng S, et al. Tailoring polymer electrolyte ionic conductivity for production of low-temperature operating quasi-all-solid-state lithium metal batteries[J]. Nature Communications,2023,14:482. doi: 10.1038/s41467-023-35857-x
    [18] Yang T Q, Wang C, Zhang W K, et al. Composite polymer electrolytes reinforced by a three-dimensional polyacrylonitrile/Li0. 33La0.557TiO3 nanofiber framework for room-temperature dendrite-free all-solid-state lithium metal battery[J]. Rare Metals,2022,41(6):1870-1879. doi: 10.1007/s12598-021-01891-1
    [19] Abdul Ahad S, Bhattacharya S, Kilian S, et al. Lithiophilic nanowire guided Li deposition in Li metal batteries[J]. Small,2023,19:2205142. doi: 10.1002/smll.202205142
    [20] Zhang S, Yang G, Li X, et al. Electrolyte and current collector designs for stable lithium metal anodes[J]. International Journal of Minerals, Metallurgy and Materials,2022,29(5):953-964. doi: 10.1007/s12613-022-2442-3
    [21] Bao J, Pei H J, Yue X Y, et al. In situ formed synaptic Zn@LiZn host derived from ZnO nanofiber decorated Zn foam for dendrite-free lithium metal anode[J]. Nano Research, 2023, DOI: 10.1007/s12274-022-5089-5.
    [22] Chen L, Chen G, Wen Z, et al. Electroplating CuO nanoneedle arrays on Ni foam as superior 3D scaffold for dendrite-free and stable Li metal anode[J]. Applied Surface Science,2022,599:153955. doi: 10.1016/j.apsusc.2022.153955
    [23] Chen W, Li S, Wang C, et al. Targeted deposition in a lithiophilic silver-modified 3D Cu host for lithium-metal anodes[J]. Energy & Environmental Materials, 2023. DOI: 10.1002/eem2.12412.
    [24] Li L X, Li Y N, Cao F F, et al. Lithiophilic interface guided transient infiltration of molten lithium for stable 3D composite lithium anodes[J]. Nano Research,2023,16:8297-8303. doi: 10.1007/s12274-022-4981-3
    [25] Gao Y, Cui B F, Wang J J, et al. Improving Li reversibility in Li metal batteries through uniform dispersion of Ag nanoparticles on graphene[J]. Rare Metals,2022,41(10):3391-3400. doi: 10.1007/s12598-022-02044-8
    [26] Zhang W, Fan Q, Zhang D, et al. Dynamic charge modulate lithium uniform plating functional composite anode for dendrite-free lithium metal batteries[J]. Nano Energy,2022,102:107677. doi: 10.1016/j.nanoen.2022.107677
    [27] Zhang J, He R, Zhuang Q, et al. Tuning 4f-center electron structure by schottky defects for catalyzing Li diffusion to achieve long-term dendrite-free lithium metal battery[J]. Advanced Science,2022,9:2202244. doi: 10.1002/advs.202202244
    [28] Yang Y, Cao J, Li W, et al. Ultrahigh-capacity and dendrite-free lithium metal anodes enabled by lithiophilic bimetallic oxides[J]. Journal of Materials Chemistry A,2022,10(44):23896-23904. doi: 10.1039/D2TA06841A
    [29] Zheng C, Yao Y, Rui X, et al. Functional MXene-based materials for next-generation rechargeable batteries[J]. Advanced Materials,2022,34:2204988. doi: 10.1002/adma.202204988
    [30] Zhao F, Zhai P, Wei Y, et al. Constructing artificial SEI layer on lithiophilic MXene surface for high-performance lithium metal anodes[J]. Advanced Science,2022,9(6):2103930. doi: 10.1002/advs.202103930
    [31] Zhao Y, Li Q, Liu Z, et al. Stable electrochemical Li plating/stripping behavior by anchoring MXene layers on three-dimensional conductive skeletons[J]. ACS Applied Materials & Interfaces,2020,12(34):37967-37976.
    [32] Wei C, Tao Y, An Y, et al. Recent advances of emerging 2D MXene for stable and dendrite-free metal anodes[J]. Advanced Functional Materials,2020,30(45):2004613. doi: 10.1002/adfm.202004613
    [33] Tan L, Wei C, Zhang Y, et al. Self-assembled, highly-lithiophilic and well-aligned biomass engineered MXene paper enables dendrite-free lithium metal anode in carbonate-based electrolyte[J]. Journal of Energy Chemistry,2022,69:221-230. doi: 10.1016/j.jechem.2022.01.024
    [34] Qian Y, Wei C, Tian Y, et al. Constructing ultrafine lithiophilic layer on MXene paper by sputtering for stable and flexible 3D lithium metal anode[J]. Chemical Engineering Journal,2021,421:129685. doi: 10.1016/j.cej.2021.129685
    [35] Liu Y, Sun C, Lu Y, et al. Lamellar-structured anodes based on lithiophilic gradient enable dendrite-free lithium metal batteries with high capacity loading and fast-charging capability[J]. Chemical Engineering Journal,2023,451:138570. doi: 10.1016/j.cej.2022.138570
    [36] Zhou S, Fu C, Chang Z, et al. Conductivity gradient modulator induced highly reversible Li anodes in carbonate electrolytes for high-voltage lithium-metal batteries[J]. Energy Storage Materials,2022,47:482-490. doi: 10.1016/j.ensm.2022.02.033
    [37] Xie D, Li H H, Diao W Y, et al. Spatial confinement of vertical arrays of lithiophilic SnS2 nanosheets enables conformal Li nucleation/growth towards dendrite-free Li metal anode[J]. Energy Storage Materials,2021,36:504-513. doi: 10.1016/j.ensm.2021.01.034
  • 加载中
图(6)
计量
  • 文章访问数:  322
  • HTML全文浏览量:  153
  • PDF下载量:  116
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-20
  • 录用日期:  2023-04-11
  • 修回日期:  2023-04-10
  • 网络出版日期:  2023-05-24
  • 刊出日期:  2023-08-01

目录

    /

    返回文章
    返回