留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A review of fluorescent carbon dots: synthesis, photoluminescence mechanism, solid-state photoluminescence and applications in white light-emitting diodes

YUE Jing-song YUAN Fang-yu QIU Han-xun LI Ying LI Jing XUE Yu-hua YANG Jun-he

岳劲松, 袁方宇, 邱汉迅, 李颖, 李静, 薛裕华, 杨俊和. 荧光碳点的合成、发光机制、固态发光及其在WLEDs中的应用. 新型炭材料(中英文), 2023, 38(3): 478-495. doi: 10.1016/S1872-5805(23)60742-5
引用本文: 岳劲松, 袁方宇, 邱汉迅, 李颖, 李静, 薛裕华, 杨俊和. 荧光碳点的合成、发光机制、固态发光及其在WLEDs中的应用. 新型炭材料(中英文), 2023, 38(3): 478-495. doi: 10.1016/S1872-5805(23)60742-5
YUE Jing-song, YUAN Fang-yu, QIU Han-xun, LI Ying, LI Jing, XUE Yu-hua, YANG Jun-he. A review of fluorescent carbon dots: synthesis, photoluminescence mechanism, solid-state photoluminescence and applications in white light-emitting diodes. New Carbon Mater., 2023, 38(3): 478-495. doi: 10.1016/S1872-5805(23)60742-5
Citation: YUE Jing-song, YUAN Fang-yu, QIU Han-xun, LI Ying, LI Jing, XUE Yu-hua, YANG Jun-he. A review of fluorescent carbon dots: synthesis, photoluminescence mechanism, solid-state photoluminescence and applications in white light-emitting diodes. New Carbon Mater., 2023, 38(3): 478-495. doi: 10.1016/S1872-5805(23)60742-5

荧光碳点的合成、发光机制、固态发光及其在WLEDs中的应用

doi: 10.1016/S1872-5805(23)60742-5
基金项目: 上海市教委创新重点项目 (2019-01-07-00-07-E00015);上海市科委人才项目 (20060502200,18ZR1426300)
详细信息
    通讯作者:

    邱汉迅,副教授. E-mail:hxqiu@usst.edu.cn

  • 中图分类号: TB333

A review of fluorescent carbon dots: synthesis, photoluminescence mechanism, solid-state photoluminescence and applications in white light-emitting diodes

More Information
  • 摘要: 荧光碳点(CDs)作为一种尺寸小于10 nm的新型碳质纳米材料,因其优异的荧光调谐性、良好的生物相容性以及来源广泛和成本低廉等优点而受到了广泛的研究。此外,由于CDs制备工艺简单、性能优异,在光学传感、能源、生物医学成像、白光发光二极管(WLEDs)等领域均有广泛的应用。近年来,大量的CDs基固态光致发光材料被开发出来并应用于WLEDs领域。基于目前的研究,本文首先对CDs的合成策略进行了简要综述,随后详细介绍了CDs的光致发光机理和实现固态光致发光的方法,并且对CDs应用于WLEDs领域的最新进展进行了总结。最后,讨论了目前CDs研究面临的问题与挑战。
  • FIG. 2361.  FIG. 2361.

    FIG. 2361..  FIG. 2361.

    Figure  1.  Approaches to prepare CDs: “Top-down” and “Bottom-up”, (a) laser ablation[28], (b) arc discharge[27], (c) electrochemical synthesis[33], (d) microwave-assisted synthesis[47], (e) pyrolysis of precursors[54], (f) hydrothermal method[39]. (Reprinted with permission)

    Figure  2.  A schematic of the relationship between different products in the one-pot hydrothermal system of CA and EDA[63]. (Reprinted with permission)

    Figure  3.  (a) Schematic diagram of formation process for CDs phosphors based on starch, (b-c) the EL spectra, photograph and CIE coordinates of as-fabricated white LED operated at 30 mA current[77]; (d) possible formation mechanisms of the SiO2/CDs composite phosphors by chemical dispersion[78]. (Reprinted with permission)

    Figure  4.  (a) The synthesis process of GRCDs phosphors, (b) the absorption spectra of CDs and GRCDs phosphors and PL spectra of CDs, Ca(OH)2 and GRCDs phosphors under excitation of 420 nm, (c-g) the fluorescence stability and thermal stability of GRCDs phosphors[79]. (Reprinted with permission)

    Figure  5.  (a) Optical images of luminescence CDs prepared from different reaction conditions under different excitation light, (b) the maximum emission peaks of CDs at different molar ratios of CA to urea and different reaction temperatures[37]. (Reprinted with permission)

    Figure  6.  (a-d) Photographs of CDs/epoxy composites and their application in LEDs, (e-g) performance and stability of WLEDs fabricated with CDs/epoxy composites[37]. (Reprinted with permission)

    Figure  7.  (a) The structure of diamond-like CDs and a photograph under UV light[85], (b) schematics of the growth mechanism of CDs synthesized via the vacuum heating method[86], (c) the synthesis of solid emissive CDs and their application in WLEDs[87], (d) schematic of CDs and ox-CDs in dispersed and aggregated states, frames on the right show possible band-energy structures and quenching processes of CDs in the aggregated state and recombination processes of ox-CDs in the aggregated state[89]. (Reprinted with permission)

    Figure  8.  (a-e) Synthesis of blue fluorescent CDs and their application in high color rendering index WLEDs[92], (f) schematic diagram of preparation of o-CDs, m-CDs and p-CDs, (g-j) Photographs of full-color CDs/PVA films under UV light and the performance of WLEDs fabricated with these films[94]. (Reprinted with permission)

    Figure  9.  (a) Synthesis route of W-CDs, photos of W-CDs under daylight and UV, and display diagram of WLEDs[101]; (b) Synthesis route of multicolor CDs[103]; (c) Construction of WLEDs with the W-CDs prepared in the cited article and performance of the devices fabricated[103]. (Reprinted with permission)

    Figure  10.  Illustrations of the typical device structure of CD-based electroluminescent LEDs

    Figure  11.  (a) Schematic structure of electroluminescent WLEDs[104]; (b-c) Schematic of host/guest doping systems (PVK/Y-CDs and TFB/Y-CDs) together with the electroluminescence spectra and corresponding CIE coordinates of WLEDs prepared from films with different TFB: Y-CDs ratios[106]; (d) The device configuration and energy level diagram of WLEDs, (e-h) Performance test results of WLEDs[110]. (Reprinted with permission)

    Table  1.   Summary of research progress of CDs in WLEDs

    Emission color
    of CDs
    Preparation method
    of CDs
    Quantum yield (QY)
    of CDs
    MethodsCorrelated color
    temperature(CCT)
    CIE
    coordinates
    Color rendering
    index(CRI)
    Ref.
    BluePlasma-induced6%PL WLEDs/(0.38, 0.36)87[92]
    BlueHydrothermal45% (CDs
    phosphors)
    PL WLEDs2805-7786 K(0.29-0.41, 0.33-0.36)85-96[93]
    Full-colorSolvothermal/PL WLEDs/(0.33, 0.34)/[94]
    RedHydrothermal53%PL WLEDs3875 K(0.39, 0.39)97[95]
    RedSolvothermal23%PL WLEDs5610 K(0.33,0.33)92[96]
    Blue, GreenHydrothermal/PL WLEDs6428 K(0.31, 0.34)/[97]
    Blue, Yellow, RedSolvothermal64%, 57%, 51%PL WLEDs5643 K(0.31, 0.29)87[98]
    WhiteSolvothermal5%-13%PL WLEDs/(0.31, 0.33)96[99]
    WhiteSolvothermal36%PL WLEDs/(0.37, 0.39)87[100]
    WhiteMicrowave23%PL WLEDs6987 K(0.30, 0.35)83[101]
    BlueSolvothermal5%PL WLEDs7093 K(0.30, 0.34)/[102]
    WhiteHydrothermal9%PL WLEDs3723 K(0.39, 0.37)91[103]
    WhiteSolvothermal/PL WLEDs6009 K(0.32, 0.35)97[108]
    WhitePyrolysis17%EL WLEDs/(0.40, 0.43)82[104]
    BlueMicrowave41%EL WLEDs7694 K(0.29, 0.33)83[105]
    YellowSolvothermal44%EL WLEDs2683-11240 K/60-80[106]
    WhiteSolvothermal19%EL WLEDs4000-5000 K(0.35, 0.36), (0.38, 0.41), (0.40, 0.43)/[107]
    RedSolvothermal86%EL WLEDs3365 K(0.38, 0.31)/[110]
    Note: "/" means that the item was not reported in the publication
    下载: 导出CSV
  • [1] Rad R R, Gualdrón‐Reyes A F, Masi S, et al. Tunable carbon-CsPbI3 quantum dots for white LEDs[J]. Advanced Optical Materials,2021,9(4):2001508. doi: 10.1002/adom.202001508
    [2] Zheng J, Xie Y, Wei Y, et al. An efficient synthesis and photoelectric properties of green carbon quantum dots with high fluorescent quantum yield[J]. Nanomaterials,2020,10(1):82. doi: 10.3390/nano10010082
    [3] Du Q, Zheng J, Wang J, et al. The synthesis of green fluorescent carbon dots for warm white LEDs[J]. RSC Advances,2018,8(35):19585-19595. doi: 10.1039/C8RA02226G
    [4] Li Y, Wang Y Q, Liu D, et al. Dual-emission ratiometric fluorescent probe based on lanthanide-functionalized carbon quantum dots for white light emission and chemical sensing[J]. ACS Omega,2021,6(22):14629-14638. doi: 10.1021/acsomega.1c01745
    [5] Xu X, Ray R, Gu Y, et al. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments[J]. Journal of the American Chemical Society,2004,126(40):12736-12737. doi: 10.1021/ja040082h
    [6] Hu Q, Gao L, Rao S Q, et al. Nitrogen and chlorine dual-doped carbon nanodots for determination of curcumin in food matrix via inner filter effect[J]. Food Chemistry,2019,280:195-202. doi: 10.1016/j.foodchem.2018.12.050
    [7] Zhang J, Wang J, Fu J, et al. Rapid synthesis of N, S co-doped carbon dots and their application for Fe3+ ion detection[J]. Journal of Nanoparticle Research,2018,20:1-9. doi: 10.1007/s11051-017-4105-2
    [8] Alizadeh N, Salimi A, Hallaj R. A strategy for visual optical determination of glucose based on a smartphone device using fluorescent boron-doped carbon nanoparticles as a light-up probe[J]. Microchimica Acta,2020,187:1-10. doi: 10.1007/s00604-019-3921-8
    [9] Tomskaya A E, Prosvirin I P, Egorova M N, et al. Structural and optical properties of N-doped and B-doped carbon dots[J]. Journal of Structural Chemistry,2020,61:818-825. doi: 10.1134/S0022476620050194
    [10] Sun S, Guan Q, Liu Y, et al. Highly luminescence manganese doped carbon dots[J]. Chinese Chemical Letters,2019,30(5):1051-1054. doi: 10.1016/j.cclet.2019.01.014
    [11] Li S, Zhou S, Li Y, et al. Exceptionally high payload of the IR780 iodide on folic acid-functionalized graphene quantum dots for targeted photothermal therapy[J]. ACS Applied Materials & Interfaces,2017,9(27):22332-22341.
    [12] Zhu P, Li W, Zhang Y, et al. β-Cyclodextrin derived full-spectrum fluorescent carbon dots: The formation process investigation and biological applications [J]. Chinese Chemical Letters, 2023: 108239.
    [13] Yuan F, Li Y, Li X, et al. Nitrogen-rich D-π-A structural carbon quantum dots with a bright two-photon fluorescence for deep-tissue imaging[J]. ACS Applied Bio Materials,2018,1(3):853-858. doi: 10.1021/acsabm.8b00276
    [14] Liu W, Zhang R, Kang Y, et al. Preparation of nitrogen-doped carbon dots with a high fluorescence quantum yield for the highly sensitive detection of Cu2+ ions, drawing anti-counterfeit patterns and imaging live cells[J]. New Carbon Materials,2019,34(4):390-402. doi: 10.1016/S1872-5805(19)30024-1
    [15] Quang N K, Hieu N N, Bao V V Q, et al. Hydrothermal synthesis of carbon nanodots from waste wine cork and their use in biocompatible fluorescence imaging[J]. New Carbon Materials,2022,37(3):595-602. doi: 10.1016/S1872-5805(22)60608-5
    [16] Yue G, Li S, Liu W, et al. Ratiometric fluorescence based on silver clusters and N, Fe doped carbon dots for determination of H2O2 and UA: N, Fe doped carbon dots as mimetic peroxidase[J]. Sensors and Actuators B:Chemical,2019,287:408-415. doi: 10.1016/j.snb.2019.02.060
    [17] Rao L, Tang Y, Li Z, et al. Efficient synthesis of highly fluorescent carbon dots by microreactor method and their application in Fe3+ ion detection[J]. Materials Science and Engineering: C,2017,81:213-223. doi: 10.1016/j.msec.2017.07.046
    [18] Liang Y, Xu L, Tang K, et al. Nitrogen-doped carbon dots used as an “on-off-on” fluorescent sensor for Fe3+ and glutathione detection[J]. Dyes and Pigments,2020,178:108358. doi: 10.1016/j.dyepig.2020.108358
    [19] Zhao K, Zheng X, Zhang H, et al. Multi-color fluorescent carbon dots with single wavelength excitation for white light-emitting diodes[J]. Journal of Alloys and Compounds,2019,793:613-619. doi: 10.1016/j.jallcom.2019.04.146
    [20] Hsiao P H, Kuo K Y, Chen Y, et al. Balance of photon management and charge collection from carbon-quantum-dot layers as self-powered broadband photodetectors[J]. Nanoscale Advances,2023,5(4):1086-1094. doi: 10.1039/D2NA00852A
    [21] Kar A, Dagar P, Kumar S, et al. Photoluminescence and lifetime studies of C-dot decorated CdS/ZnFe2O4 composite designed for photoelectrochemical applications[J]. Journal of Photochemistry and Photobiology A:Chemistry,2023,439:114612. doi: 10.1016/j.jphotochem.2023.114612
    [22] Zu F, Yan F, Bai Z, et al. The quenching of the fluorescence of carbon dots: a review on mechanisms and applications[J]. Microchimica Acta,2017,184:1899-1914. doi: 10.1007/s00604-017-2318-9
    [23] Xue S, Li P, Sun L, et al. The formation process and mechanism of carbon dots prepared from aromatic compounds as precursors: a review [J]. Small, 2023, e2206180.
    [24] de Medeiros T V, Manioudakis J, Noun F, et al. Microwave-assisted synthesis of carbon dots and their applications[J]. Journal of Materials Chemistry C,2019,7(24):7175-7195. doi: 10.1039/C9TC01640F
    [25] Wang X, Feng Y, Dong P, et al. A mini review on carbon quantum dots: Preparation, properties, and electrocatalytic application[J]. Frontiers in Chemistry,2019,7:671. doi: 10.3389/fchem.2019.00671
    [26] Zhang Y, Li K, Ren S, et al. Coal-derived graphene quantum dots produced by ultrasonic physical tailoring and their capacity for Cu (II) detection[J]. ACS Sustainable Chemistry & Engineering,2019,7(11):9793-9799.
    [27] Dey S, Govindaraj A, Biswas K, et al. Luminescence properties of boron and nitrogen doped graphene quantum dots prepared from arc-discharge-generated doped graphene samples[J]. Chemical Physics Letters,2014,595:203-208.
    [28] Sun Y-P, Zhou B, Lin Y, et al. Quantum-sized carbon dots for bright and colorful photoluminescence[J]. Journal of the American Chemical Society,2006,128(24):7756-7757. doi: 10.1021/ja062677d
    [29] Cao L, Wang X, Meziani M J, et al. Carbon dots for multiphoton bioimaging[J]. Journal of the American Chemical Society,2007,129(37):11318-11319. doi: 10.1021/ja073527l
    [30] Yang S T, Wang X, Wang H, et al. Carbon dots as nontoxic and high-performance fluorescence imaging agents[J]. The Journal of Physical Chemistry C,2009,113(42):18110-18114. doi: 10.1021/jp9085969
    [31] Hu S L, Niu K Y, Sun J, et al. One-step synthesis of fluorescent carbon nanoparticles by laser irradiation[J]. Journal of Materials Chemistry,2009,19(4):484-488. doi: 10.1039/B812943F
    [32] Borna S, Sabzi R E, Pirsa S. Synthesis of carbon quantum dots from apple juice and graphite: Investigation of fluorescence and structural properties and use as an electrochemical sensor for measuring Letrozole[J]. Journal of Materials Science:Materials in Electronics,2021,32:10866-10879. doi: 10.1007/s10854-021-05745-5
    [33] Lee Y S, Hu C C, Chiu T C. Electrochemical synthesis of fluorescent carbon dots for the selective detection of chlortetracycline[J]. Journal of Environmental Chemical Engineering,2022,10(3):107413. doi: 10.1016/j.jece.2022.107413
    [34] Ran Q, Wang X, Ling P, et al. A thermal-assisted electrochemical strategy to synthesize carbon dots with bimodal photoluminescence emission[J]. Carbon,2022,193:404-411. doi: 10.1016/j.carbon.2022.03.041
    [35] Liu M, Xu Y, Niu F, et al. Carbon quantum dots directly generated from electrochemical oxidation of graphite electrodes in alkaline alcohols and the applications for specific ferric ion detection and cell imaging[J]. Analyst,2016,141(9):2657-2664. doi: 10.1039/C5AN02231B
    [36] Liu H, Liu Z H, Zhang J Q, et al. Boron and nitrogen co-doped carbon dots for boosting electrocatalytic oxygen reduction[J]. New Carbon Materials,2021,36(3):585-593. doi: 10.1016/S1872-5805(21)60043-4
    [37] Miao X, Qu D, Yang D, et al. Synthesis of carbon dots with multiple color emission by controlled graphitization and surface functionalization[J]. Advanced Materials,2018,30(1):1704740. doi: 10.1002/adma.201704740
    [38] Yu R, Liang S, Ru Y, et al. A facile preparation of multicolor carbon dots[J]. Nanoscale Research Letters,2022,17(1):32. doi: 10.1186/s11671-022-03661-z
    [39] Zhao Y, Yu L, Deng Y, et al. A multi-color carbon quantum dots based on the coordinated effect of quantum size and surface defects with green synthesis [J]. Ceramics International, 2023.
    [40] Zhang R, Zhang L, Yu R, et al. Rapid and sensitive detection of methyl parathion in rice based on carbon quantum dots nano-fluorescence probe and inner filter effect[J]. Food Chemistry,2023,413:135679. doi: 10.1016/j.foodchem.2023.135679
    [41] Wang R, Li S, Huang H, et al. Preparation of carbon dots from PET waste by one-step hydrothermal method and its application in light blocking films and LEDs [J]. Journal of Fluorescence, 2023: 1-11.
    [42] Fang L Y, Zheng J T. Carbon quantum dots: Synthesis and correlation of luminescence behavior with microstructure[J]. New Carbon Materials,2021,36(3):625-631. doi: 10.1016/S1872-5805(21)60031-8
    [43] Li L P, Ren X F, Bai P R, et al. Near-infrared emission carbon dots for bio-imaging applications[J]. New Carbon Materials,2021,36(3):632-638. doi: 10.1016/S1872-5805(21)60041-0
    [44] Yuan F, He P, Xi Z, et al. Highly efficient and stable white LEDs based on pure red narrow bandwidth emission triangular carbon quantum dots for wide-color gamut backlight displays[J]. Nano Research,2019,12(7):1669-1674. doi: 10.1007/s12274-019-2420-x
    [45] Li Q, Wu X, Zhang X, et al. Green and rapid synthesis of biomass carbon dot-based fluorescence sensing for the sensitive determination of oxytetracycline[J]. Analytical Methods,2023,15(12):1569-1575. doi: 10.1039/D2AY02031A
    [46] Zheng J, Cao Z, Lei M, et al. Rapid preparation of N, B-codoped carbon quantum dot based films with strong two-photon absorption and optical limiting effect[J]. Journal of Materials Chemistry C,2023,11(9):3342-3353. doi: 10.1039/D2TC05106K
    [47] Liu H, He Z, Jiang L P, et al. Microwave-assisted synthesis of wavelength-tunable photoluminescent carbon nanodots and their potential applications[J]. ACS Applied Materials & Interfaces,2015,7(8):4913-4920.
    [48] Zheng J, Wang Y, Zhang F, et al. Microwave-assisted hydrothermal synthesis of solid-state carbon dots with intensive emission for white light-emitting devices[J]. Journal of Materials Chemistry C,2017,5(32):8105-8111. doi: 10.1039/C7TC01701D
    [49] Qiu H, Yuan F, Wang Y, et al. Green-light-emitting carbon dots via eco-friendly route and their potential in ferric-ion detection and WLEDs[J]. Materials Advances,2022,3(19):7339-7347. doi: 10.1039/D2MA00520D
    [50] Liu R. Facile synthesis of magneto-fluorescent carbon dots by one-step microwave-assisted pyrolysis[J]. Journal of Alloys and Compounds,2021,855:157456. doi: 10.1016/j.jallcom.2020.157456
    [51] Ahlawat A, Dhiman T K, Solanki P R, et al. Facile synthesis of carbon dots via pyrolysis and their application in photocatalytic degradation of rhodamine B (RhB) [J]. Environmental Science and Pollution Research, 2023: 1-8.
    [52] Chen M, Zhai J, An Y, et al. Solvent-free pyrolysis strategy for the preparation of biomass carbon dots for the selective detection of Fe3+ ions [J]. Frontiers in Chemistry, 2022, 10.
    [53] Guo X, Wang C F, Yu Z Y, et al. Facile access to versatile fluorescent carbon dots toward light-emitting diodes[J]. Chemical Communications,2012,48(21):2692-2694. doi: 10.1039/c2cc17769b
    [54] Li Y, Li R, Zhu Z, et al. Electrochemiluminescence detection of Cu2+ ions by nitrogen-doped carbon quantum dots and zinc oxide composites[J]. Microchemical Journal,2022,183:108073. doi: 10.1016/j.microc.2022.108073
    [55] Cardoso M A, Duarte A J, Gonçalves H M R. Carbon dots as reactive nitrogen species nanosensors[J]. Analytica Chimica Acta,2022,1202:339654. doi: 10.1016/j.aca.2022.339654
    [56] Zhu S, Song Y, Zhao X, et al. The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective[J]. Nano Research,2015,8(2):355-381. doi: 10.1007/s12274-014-0644-3
    [57] Eda G, Lin Y Y, Mattevi C, et al. Blue photoluminescence from chemically derived graphene oxide[J]. Advanced Materials,2010,22(4):505-509. doi: 10.1002/adma.200901996
    [58] Yuan F, Yuan T, Sui L, et al. Engineering triangular carbon quantum dots with unprecedented narrow bandwidth emission for multicolored LEDs[J]. Nature Communications,2018,9(1):2249. doi: 10.1038/s41467-018-04635-5
    [59] Ding H, Yu S B, Wei J S, et al. Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism[J]. ACS Nano,2016,10(1):484-491. doi: 10.1021/acsnano.5b05406
    [60] Wang M, Sun R, Wang Q, et al. Effects of C-related dangling bonds and functional groups on the fluorescent and electrochemiluminescent properties of carbon-based dots[J]. Chemistry–A European Journal,2018,24(17):4250-4254. doi: 10.1002/chem.201706078
    [61] Ding Y, Zheng J, Wang J, et al. Direct blending of multicolor carbon quantum dots into fluorescent films for white light emitting diodes with an adjustable correlated color temperature[J]. Journal of Materials Chemistry C,2019,7(6):1502-1509. doi: 10.1039/C8TC04887H
    [62] Fang Q, Dong Y, Chen Y, et al. Luminescence origin of carbon based dots obtained from citric acid and amino group-containing molecules[J]. Carbon,2017,118:319-326. doi: 10.1016/j.carbon.2017.03.061
    [63] Song Y, Zhu S, Zhang S, et al. Investigation from chemical structure to photoluminescent mechanism: A type of carbon dots from the pyrolysis of citric acid and an amine[J]. Journal of Materials Chemistry C,2015,3(23):5976-5984. doi: 10.1039/C5TC00813A
    [64] Li F, Yang D, Xu H. Non-metal-heteroatom-doped carbon dots: Synthesis and properties[J]. Chemistry-A European Journal,2019,25(5):1165-1176. doi: 10.1002/chem.201802793
    [65] Zhu S, Meng Q, Wang L, et al. Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging[J]. Angewandte Chemie International Edition,2013,52(14):3953-3957. doi: 10.1002/anie.201300519
    [66] Hu S, Trinchi A, Atkin P, et al. Tunable photoluminescence across the entire visible spectrum from carbon dots excited by white light[J]. Angewandte Chemie International Edition,2015,54(10):2970-2974. doi: 10.1002/anie.201411004
    [67] Hola K, Sudolská M, Kalytchuk S, et al. Graphitic nitrogen triggers red fluorescence in carbon dots[J]. ACS Nano,2017,11(12):12402-12410. doi: 10.1021/acsnano.7b06399
    [68] Wu Z L, Liu Z X, Yuan Y H. Carbon dots: Materials, synthesis, properties and approaches to long-wavelength and multicolor emission[J]. Journal of Materials Chemistry B,2017,5(21):3794-3809. doi: 10.1039/C7TB00363C
    [69] Xu A, Wang G, Li Y, et al. Carbon-based quantum dots with solid-state photoluminescent: Mechanism, implementation, and application[J]. Small,2020,16(48):2004621. doi: 10.1002/smll.202004621
    [70] Sun M, Qu S, Hao Z, et al. Towards efficient solid-state photoluminescence based on carbon-nanodots and starch composites[J]. Nanoscale,2014,6(21):13076-13081. doi: 10.1039/C4NR04034A
    [71] Yan Y, Yin L, Guo H, et al. High stability carbon dots phosphor and ultra-high color rendering index white light-emitting diodes[J]. IEEE Photonics Journal,2022,14(1):1-6.
    [72] Zheng J X, Liu X H, Yang Y Z, et al. Rapid and green synthesis of fluorescent carbon dots from starch for white light-emitting diodes[J]. New Carbon Materials,2018,33(3):276-288. doi: 10.1016/S1872-5805(18)60339-7
    [73] Zheng X G, Wang H L, Ding G Q, et al. Facile synthesis of highly graphitized nitrogen-doped carbon dots and carbon sheets with solid-state white-light emission[J]. Materials Letters,2017,195:58-61. doi: 10.1016/j.matlet.2017.02.094
    [74] Feng X T, Zhang F, Wang Y L, et al. Luminescent carbon quantum dots with high quantum yield as a single white converter for white light emitting diodes[J]. Applied Physics Letters,2015,107(21):213102. doi: 10.1063/1.4936234
    [75] Wang H, Zhang Z, Yan Q, et al. Highly luminescent solid-state carbon dots embedded in a boric acid matrix[J]. ChemistrySelect,2020,5(44):13969-13973. doi: 10.1002/slct.202004009
    [76] Wu J, Xin W, Wu Y, et al. Solid-state photoluminescent silicone-carbon dots/dendrimer composites for highly efficient luminescent solar concentrators[J]. Chemical Engineering Journal,2021,422:130158. doi: 10.1016/j.cej.2021.130158
    [77] Cao M, Xia C, Xia J, et al. A yellow carbon dots-based phosphor with high efficiency for white light-emitting devices[J]. Journal of Luminescence,2019,206:97-104. doi: 10.1016/j.jlumin.2018.10.056
    [78] Sun M, Han Y, Yuan X, et al. Efficient full-color emitting carbon-dot-based composite phosphors by chemical dispersion[J]. Nanoscale,2020,12(29):15823-15831. doi: 10.1039/D0NR02021D
    [79] Cao M, Liu Y, Zhu M, et al. A novel and highly stable dual-emission carbon dots-based phosphor[J]. Journal of Alloys and Compounds,2021,873:159819. doi: 10.1016/j.jallcom.2021.159819
    [80] Lee U, Heo E, Le T H, et al. Carbon dots for epoxy curing: Anti-forgery patterns with long-term luminescent stability[J]. Chemical Engineering Journal,2021,405:126988. doi: 10.1016/j.cej.2020.126988
    [81] Barman B K, Sele Handegård Ø, Hashimoto A, et al. Carbon dot/cellulose-based transparent films for efficient UV and high-energy blue light screening[J]. ACS Sustainable Chemistry & Engineering,2021,9(29):9879-9890.
    [82] Mou C, Wang X, Liu Y, et al. A robust carbon dot-based antibacterial CDs-PVA film as a wound dressing for antibiosis and wound healing[J]. Journal of Materials Chemistry B,2023,11(9):1940-1947. doi: 10.1039/D2TB02582E
    [83] Kumari R, Kumar A, Negi K, et al. Multicolor-emissive carbon dots for white-light-emitting diodes and room-temperature phosphorescence[J]. ACS Applied Nano Materials,2023,6(2):918-929. doi: 10.1021/acsanm.2c04312
    [84] Ai L, Yang Y, Wang B, et al. Insights into photoluminescence mechanisms of carbon dots: Advances and perspectives[J]. Science Bulletin,2021,66(8):839-856. doi: 10.1016/j.scib.2020.12.015
    [85] Li H, Zhang Z, Ding J, et al. Diamond-like carbon structure-doped carbon dots: a new class of self-quenching-resistant solid-state fluorescence materials toward light-emitting diodes[J]. Carbon,2019,149:342-349. doi: 10.1016/j.carbon.2019.04.074
    [86] Zhou D, Jing P, Wang Y, et al. Carbon dots produced via space-confined vacuum heating: maintaining efficient luminescence in both dispersed and aggregated states[J]. Nanoscale Horizons,2019,4(2):388-395. doi: 10.1039/C8NH00247A
    [87] Han S, Chen X, Hu Y, et al. Solid-state N, P-doped carbon dots conquer aggregation-caused fluorescence quenching and couple with europium metal-organic frameworks toward white light-emitting diodes[J]. Dyes and Pigments,2021,187:109090. doi: 10.1016/j.dyepig.2020.109090
    [88] Chen Y, Zheng M, Xiao Y, et al. A self-quenching-resistant carbon-dot powder with tunable solid-state fluorescence and construction of dual-fluorescence morphologies for white light-emission[J]. Advanced Materials,2016,28(2):312-318. doi: 10.1002/adma.201503380
    [89] Zhou Z, Tian P, Liu X, et al. Hydrogen peroxide-treated carbon dot phosphor with a bathochromic-shifted, aggregation-enhanced emission for light-emitting devices and visible light communication[J]. Advanced Science,2018,5(8):1800369. doi: 10.1002/advs.201800369
    [90] Tao Y, Lin J, Wang D, et al. Na+-functionalized carbon dots with aggregation-induced and enhanced cyan emission[J]. Journal of Colloid and Interface Science,2021,588:469-475. doi: 10.1016/j.jcis.2020.12.104
    [91] Fakharuddin A, Gangishetty M K, Abdi-Jalebi M, et al. Perovskite light-emitting diodes[J]. Nature Electronics,2022,5(4):203-216. doi: 10.1038/s41928-022-00745-7
    [92] Li C X, Yu C, Wang C F, et al. Facile plasma-induced fabrication of fluorescent carbon dots toward high-performance white LEDs[J]. Journal of Materials Science,2013,48(18):6307-6311. doi: 10.1007/s10853-013-7430-6
    [93] Sun C, Zhang Y, Sun K, et al. Combination of carbon dot and polymer dot phosphors for white light-emitting diodes[J]. Nanoscale,2015,7(28):12045-12050. doi: 10.1039/C5NR03014E
    [94] Jiang K, Sun S, Zhang L, et al. Red, green, and blue luminescence by carbon dots: Full-color emission tuning and multicolor cellular imaging[J]. Angewandte Chemie,2015,127(18):5450-5453. doi: 10.1002/ange.201501193
    [95] Wang Z, Yuan F, Li X, et al. 53% efficient red emissive carbon quantum dots for high color rendering and stable warm white-light-emitting diodes[J]. Advanced Materials,2017,29(37):1702910. doi: 10.1002/adma.201702910
    [96] Zhai Y, Wang Y, Li D, et al. Red carbon dots-based phosphors for white light-emitting diodes with color rendering index of 92[J]. Journal of Colloid and Interface Science,2018,528:281-288. doi: 10.1016/j.jcis.2018.05.101
    [97] Chen X, Wu W, Zhang W, et al. Blue and green double band luminescent carbon quantum dots: Synthesis, origin of photoluminescence, and application in white light-emitting devices[J]. Applied Physics Letters,2021,118(15):153102. doi: 10.1063/5.0046495
    [98] Sun Z, Yan F, Xu J, et al. Solvent-controlled synthesis strategy of multicolor emission carbon dots and its applications in sensing and light-emitting devices[J]. Nano Research,2021,15(1):414-422.
    [99] Perikala M, Bhardwaj A. Excellent color rendering index single system white light emitting carbon dots for next generation lighting devices[J]. Scientific Reports,2021,11(1):1-11. doi: 10.1038/s41598-020-79139-8
    [100] Wang B, Song H, Tang Z, et al. Ethanol-derived white emissive carbon dots: the formation process investigation and multi-color/white LEDs preparation[J]. Nano Research,2022,15(2):942-949. doi: 10.1007/s12274-021-3579-5
    [101] Feng X, Jiang K, Zeng H, et al. A facile approach to solid-state white emissive carbon dots and their application in UV-excitable and single-component-based white LEDs[J]. Nanomaterials,2019,9(5):725. doi: 10.3390/nano9050725
    [102] Li W, Wu M, Jiang H, et al. Carbon dots/ZnO quantum dots composite-based white phosphors for white light-emitting diodes[J]. Chemical Communications,2022,58(12):1910-1913. doi: 10.1039/D1CC06180A
    [103] Han Q, Xu W, Ji C, et al. Multicolor and single-component white light-emitting carbon dots from a single precursor for light-emitting diodes[J]. ACS Applied Nano Materials,2022,5(10):15914-15924. doi: 10.1021/acsanm.2c04130
    [104] Wang F, Chen Y, Liu C, et al. White light-emitting devices based on carbon dots’ electroluminescence[J]. Chemical Communications,2011,47(12):3502-3504. doi: 10.1039/c0cc05391k
    [105] Xu J, Miao Y, Zheng J, et al. Carbon dot-based white and yellow electroluminescent light emitting diodes with a record-breaking brightness[J]. Nanoscale,2018,10(23):11211-11221. doi: 10.1039/C8NR01834K
    [106] Wang Z, Jiang N, Liu M, et al. Bright electroluminescent white-light-emitting diodes based on carbon dots with tunable correlated color temperature enabled by aggregation[J]. Small,2021,17(52):2104551. doi: 10.1002/smll.202104551
    [107] Zhou X, Yi K, Yang Y, et al. A novel method for the synthesis of carbon dots assisted by free radicals[J]. Nano Research,2022,15(10):9470-9478. doi: 10.1007/s12274-022-4567-0
    [108] Yan Z, Chen T, Yan L, et al. One-step synthesis of white-light-emitting carbon dots for white LEDs with a high color rendering index of 97 [J]. Advanced Science, 2023: 2206386.
    [109] Zhao B, Tan Z. Fluorescent carbon dots: Fantastic electroluminescent materials for light-emitting diodes[J]. Advanced Science,2021,8(7):2001977. doi: 10.1002/advs.202001977
    [110] Jia H, Wang Z, Yuan T, et al. Electroluminescent warm white light-emitting diodes based on passivation enabled bright red bandgap emission carbon quantum dots[J]. Advanced Science,2019,6(13):1900397. doi: 10.1002/advs.201900397
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  509
  • HTML全文浏览量:  278
  • PDF下载量:  122
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-20
  • 修回日期:  2023-04-24
  • 网络出版日期:  2023-05-15
  • 刊出日期:  2023-06-01

目录

    /

    返回文章
    返回