留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Molecular-scale grinding of uniform small-size graphene flakes for use as lubricating oil additives

GUO Yu-fen ZHANG Hui-tao LIU Yue-wen ZHOU Xu-feng LIU Zhao-ping

郭玉芬, 张慧涛, 刘跃文, 周旭峰, 刘兆平. 利用分子级助磨剂制备均匀小尺寸石墨烯及其润滑油添加剂应用. 新型炭材料(中英文), 2023, 38(5): 954-963. doi: 10.1016/S1872-5805(23)60748-6
引用本文: 郭玉芬, 张慧涛, 刘跃文, 周旭峰, 刘兆平. 利用分子级助磨剂制备均匀小尺寸石墨烯及其润滑油添加剂应用. 新型炭材料(中英文), 2023, 38(5): 954-963. doi: 10.1016/S1872-5805(23)60748-6
GUO Yu-fen, ZHANG Hui-tao, LIU Yue-wen, ZHOU Xu-feng, LIU Zhao-ping. Molecular-scale grinding of uniform small-size graphene flakes for use as lubricating oil additives. New Carbon Mater., 2023, 38(5): 954-963. doi: 10.1016/S1872-5805(23)60748-6
Citation: GUO Yu-fen, ZHANG Hui-tao, LIU Yue-wen, ZHOU Xu-feng, LIU Zhao-ping. Molecular-scale grinding of uniform small-size graphene flakes for use as lubricating oil additives. New Carbon Mater., 2023, 38(5): 954-963. doi: 10.1016/S1872-5805(23)60748-6

利用分子级助磨剂制备均匀小尺寸石墨烯及其润滑油添加剂应用

doi: 10.1016/S1872-5805(23)60748-6
基金项目: 2021年浙江省博士后科研项目择优资助项目(ZJ2021003)
详细信息
    通讯作者:

    周旭峰. E-mail:zhouxf@nimte.ac.cn

    刘兆平. E-mail:liuzp@nimte.ac.cn

  • 中图分类号: TQ127.1+1

Molecular-scale grinding of uniform small-size graphene flakes for use as lubricating oil additives

More Information
  • 摘要: 目前研究者已开发出了多种石墨制备石墨烯的产业化制备方法,其中最为常用的是化学氧化还原法和插层解剖法。然而,实现径向尺寸小于1 μm的石墨烯的低成本规模化制备始终是一个挑战,诸如纺织纤维、车用润滑油、高分子材料等,需要小尺寸石墨烯的应用领域的技术发展也因此受到限制。为此,本文提出了一种原位合成纳米助磨剂辅助的球磨方法,可以实现均匀小尺寸薄层石墨烯的低成本可控制备。此方法制备的石墨烯径向尺寸小于1 μm,且该方法对石墨烯片的晶体结构破坏较小,面内几乎没有含氧官能团,因而石墨烯的基本物理属性没有遭到破坏。此外,利用处理过的小尺寸石墨烯作为润滑油添加剂,不仅可以解决目前石墨烯在润滑油中存在的分散稳定性差的问题,还能够降低27%以上的摩擦系数,减少38.8%以上的磨损。本文提出的这种小尺寸石墨烯制备方法简单、成本低廉、润滑应用效果显著,具有很大的应用潜力。
  • FIG. 2657.  FIG. 2657.

    FIG. 2657..  FIG. 2657.

    Figure  1.  Schemetic illustration of the preparation process and mechanism of SG

    Figure  2.  (a) SEM image of raw graphite flakes; (b, c) SEM images of graphene powder at different magnifications; (d) SEM image of dispersed graphene

    Figure  3.  SEM images of graphene prepared with different methods. (a) Graphene prepared without adding any grinding aid; (b) Graphene prepared in sodium hydroxide alkali solution; (c) Graphene prepared using calcium hydroxide as grinding aid; (d) Graphene prepared using synthetic calcium carbonate as grinding aids

    Figure  4.  Particle size distribution of SG

    Figure  5.  (a) XPS spectra and (b) Raman spectra of the raw graphite and SG

    Figure  6.  Schematic diagram of SG grafting T151

    Figure  7.  Optical photos of SG lubricating oil additive

    Figure  8.  Optical photo of SG lubricating oil additive dispersed in base oil (PAO) after standing for 30 days. The graphene content from left to right is 1%, 1 ‰, 1.0×10−4, 1.0×10−5, and 0, respectively

    Figure  9.  The dispersion stability of graphene

    Figure  10.  The test curve of friction coefficient and the photos of wear scar test of basic white oil that containing graphene lubricating oil additive. The pictures below from left to right are wear scars of basic white oil, and white oil with 1.0×10−5 graphene and 5.0×10−5 graphene, respectively

    Figure  11.  The test curve of friction coefficient and the photos of wear scar test of synthetic oil that containing graphene lubricating oil additive. The figure below from left to right are the wear scars that with no graphene filler, and the graphene filler amount of 5.0×10−5, 1.0×10−5, respectively

  • [1] M I Katsnelson. Graphene: Carbon in two dimensions[J]. Materials Today,2007,10(1-2):20-27. doi: 10.1016/S1369-7021(06)71788-6
    [2] K I Bolotin, K J Sikes, Jiang Z G, et al. Ultrahigh electron mobility in suspended graphene[J]. Solid State Communications,2008,146(9-10):351-355. doi: 10.1016/j.ssc.2008.02.024
    [3] K Novoselov, Jiang Z F, Zhang Y S, et al. Room-temperature quantum hall effect in graphene[J]. Science,2007,315(5817):1379-1379. doi: 10.1126/science.1137201
    [4] N Tombros, C Jozsa, M Popinciuc, et al. Electronic spin transport and spin precession in single graphene layers at room temperature[J]. Nature,2007,448(7153):571-574. doi: 10.1038/nature06037
    [5] M D Stoller, Park S J, Zhu Y W, et al. Graphene-based ultracapacitors[J]. Nano Letters,2008,8(10):3498-3502. doi: 10.1021/nl802558y
    [6] A Geim, K Novoselov. The rise of graphene[J]. Nature Materials,2007,6(3):183-191. doi: 10.1038/nmat1849
    [7] A A Balandin, S Ghosh, Bao W Z, et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letters,2008,8(3):902-907. doi: 10.1021/nl0731872
    [8] Lee C G, Wei X D, J W Kysar, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science,2008,321(5887):385-388. doi: 10.1126/science.1157996
    [9] A Reina, Jia X T, J Ho, et al. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition[J]. Nano Letters,2009,9(1):30-35. doi: 10.1021/nl801827v
    [10] Li D, M B Müller, S Gilje, et al. Processable aqueous dispersions of graphene nanosheets[J]. Nature Nanotechnology,2008,3(2):101-105. doi: 10.1038/nnano.2007.451
    [11] Liu Y W, A H Siddique, Huang H R, et al. In situ preparation of Fe3O4 in a carbon hybrid of graphene nanoscrolls and carbon nanotubes as high performance anode material for lithium-ion batteries[J]. Nanotechnology,2017,28(46):5401.
    [12] Geng X M, Guo Y F, Li D F, et al. Interlayer catalytic exfoliation realizing scalable production of large-size pristine few-layer graphene[J]. Scientific Reports,2013,3:1134. doi: 10.1038/srep01134
    [13] Zhu H H, Cao Y L, Zhang J Z, et al. One-step preparation of graphene nanosheets via ball milling of graphite and the application in lithium-ion batteries[J]. Journal of Materials Science,2016,51:3675-3683. doi: 10.1007/s10853-015-9655-z
    [14] T J Nacken, C Damm, J Walter, et al. Delamination of graphite in a high pressure homogenizer[J]. RSC Advances,2015,5:57328-57338. doi: 10.1039/C5RA08643D
    [15] Wang Y Z, Chen T, Liu H H, et al. Direct liquid phase exfoliation of graphite to produce few-layer graphene by microfluidization[J]. Journal of Nanoscience and Nanotechnology,2019,19(4):2078-2086. doi: 10.1166/jnn.2019.15805
    [16] P Karagiannidis, S A Hodge, L Lombardi, et al. Microfluidization of graphite and formulation of graphene-based conductive inks[J]. ACS Nano,2017,11(3):2742-2755. doi: 10.1021/acsnano.6b07735
    [17] Zheng QF, Han B G, Cui X, et al. Graphene-engineered cementitious composites: Small makes a big impact[J]. Nanomaterials and Nanotechnology,2017,7:1-18.
    [18] J E Casado, A F González, et al. Unctuous ZrO2 nanoparticles with improved functional attributes as lubricant additives[J]. Nanotechnology,2017,28(49):495704. doi: 10.1088/1361-6528/aa93ca
    [19] A Kotia, S Borkakoti, S K Ghosh. Wear and performance analysis of a 4-stroke diesel engine employing nanolubricants[J]. Particuology,2018,37:54-63. doi: 10.1016/j.partic.2017.05.016
    [20] Hu E Z, Xu Y, Hu K H, et al. Tribological properties of 3 types of MoS2 additives in different base greases[J]. Lubrication Science,2017,29(8):541-555. doi: 10.1002/ls.1387
    [21] Liu, S W, Wang H P, Xu Q, et al. Robust microscale superlubricity under high contact pressure enabled by graphene-coated microsphere[J]. Nature communications,2017,8:14029. doi: 10.1038/ncomms14029
    [22] Li J J, Cao W, Li J F et al. Molecular origin of superlubricity between graphene and highly hydrophobic surface in water[J]. Journal of Physical Chemistry Letters,2019,10(11):2978-2984. doi: 10.1021/acs.jpclett.9b00952
    [23] G Paul, H Hirani, T Kuila, et al. Nanolubricants dispersed with graphene and its derivatives: An assessment and review of the tribological performance[J]. Nanoscale,2019,11(8):3458-3483. doi: 10.1039/C8NR08240E
    [24] Meng Y, Su F H, Chen Y Z. Supercritical Fluid Synthesis and Tribological Applications of Silver Nanoparticle-decorated Graphene in Engine Oil Nanofluid[J]. Scientific Reports,2016,6:31246. doi: 10.1038/srep312465
    [25] Liu Y F, Ge X Y, Li J J. Graphene lubrication[J]. Applied materials today,2020,20:100662. doi: 10.1016/j.apmt.2020.100662
    [26] S S N Azman, N W M Zulkifli, H Masjuki, et al. Study of tribological properties of lubricating oil blend added with graphene nanoplatelets[J]. Journal of Materials Research,2016,31(13):1932-1938. doi: 10.1557/jmr.2016.24
    [27] Lin J S, Wang L W, Chen G H. Modification of graphene platelets and their ribological properties as a lubricant additive[J]. Tribology letters,2011,41(1):209-215. doi: 10.1007/s11249-010-9702-5
    [28] Wu L P, Gu L, Xie Z J, et al. Improved tribological properties of Si3N4/GCr15 sliding pairs with few layer graphene as oil additives[J]. Ceramics international,2017,43(16):14218-14224. doi: 10.1016/j.ceramint.2017.07.168
    [29] E Omrani, P L Menezes, P K Rohatgi. Effect of microand nano-sized carbonous solid lubricants as oil additives in nanofluid on tribological properties[J]. Lubricants,2019,7(3):25. doi: 10.3390/lubricants7030025
    [30] Mu Y F, Zhang W, Dong G X, et al. Ultrathin and small-size graphene oxide as an electron mediator for perovskite-based z-scheme system to significantly enhance photocatalytic CO2 reduction[J]. Small, 2020, 202002140.
    [31] D Mathur, Li L H, A M Glushenkov, et al. High-efficient production of boron nitride nanosheets via an optimized ball milling process for lubrication in oil[J]. Scientific Reports,2014,4:7288. doi: 10.1038/srep07288
    [32] Y Hernandez, V Nicolosi, M Lotya, et al. High-yield production of graphene by liquid-phase exfoliation of graphite[J]. Nature nanotechnology,2008,3(215):563-568.
    [33] N Rekha, Kim S O. Surfactant mediated liquid phase exfoliation of graphene[J]. Nano Convergence, 2015, 2:20.
    [34] Yang J, Xia Y F, Song H J, et al. Synthesis of the liquid-like graphene with excellent tribological properties[J], Tribology International, 2017, 105: 118-124
  • 20230512supporting information.pdf
    20230512 supportting imformance video.mp4
  • 加载中
图(12)
计量
  • 文章访问数:  203
  • HTML全文浏览量:  100
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-03
  • 录用日期:  2023-05-15
  • 修回日期:  2023-05-12
  • 网络出版日期:  2023-06-02
  • 刊出日期:  2023-10-01

目录

    /

    返回文章
    返回