留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

煤基富氧多孔炭纳米片的制备及其超级电容器性能

车晓刚 靳皎 张艺潇 刘思宇 王满 杨卷

车晓刚, 靳皎, 张艺潇, 刘思宇, 王满, 杨卷. 煤基富氧多孔炭纳米片的制备及其超级电容器性能. 新型炭材料(中英文), 2023, 38(6): 1050-1058. doi: 10.1016/S1872-5805(23)60752-8
引用本文: 车晓刚, 靳皎, 张艺潇, 刘思宇, 王满, 杨卷. 煤基富氧多孔炭纳米片的制备及其超级电容器性能. 新型炭材料(中英文), 2023, 38(6): 1050-1058. doi: 10.1016/S1872-5805(23)60752-8
CHE Xiao-gang, JIN Jiao, ZHANG Yi-xiao, LIU Si-yu, WANG Man, YANG Juan. Fabrication of coal-based oxygen-rich porous carbon nanosheets for high-performance supercapacitors. New Carbon Mater., 2023, 38(6): 1050-1058. doi: 10.1016/S1872-5805(23)60752-8
Citation: CHE Xiao-gang, JIN Jiao, ZHANG Yi-xiao, LIU Si-yu, WANG Man, YANG Juan. Fabrication of coal-based oxygen-rich porous carbon nanosheets for high-performance supercapacitors. New Carbon Mater., 2023, 38(6): 1050-1058. doi: 10.1016/S1872-5805(23)60752-8

煤基富氧多孔炭纳米片的制备及其超级电容器性能

doi: 10.1016/S1872-5805(23)60752-8
基金项目: 国家自然科学基金 (22278328)和陕西省重点研发计划项目 (2023-YBGY-292)。
详细信息
    作者简介:

    车晓刚,硕士研究生. E-mail:13115063021@163.com

    通讯作者:

    杨 卷,博士,副教授. E-mail:juanyang@xjtu.edu.cn

  • 中图分类号: TQ530

Fabrication of coal-based oxygen-rich porous carbon nanosheets for high-performance supercapacitors

Funds: National Natural Science Foundation of China (22278328), Shaanxi Province Key R&D Program Project (2023-YBGY-292).
More Information
  • 摘要: 多孔炭电极的表面改性与优化是实现超级电容器优异性能的关键。本文以煤化学工业的固体副产物为碳源,利用二维层状双氢氧化物(MgAl-LDH)的刚性约束作用耦合KOH活化工艺成功制备了二维富氧多孔炭纳米材料(OPCN)。系统研究了炭化温度对OPCN样品微观结构和表面特性的影响,通过SEM、TEM、氮气吸脱附测试以及元素分析等表征手段对炭材料的结构/组成和表面特性进行分析表明,经700 °C炭化获得的炭材料样品(OPCN-700)具有较高的氧质量分数(24.4%)和大的比表面积(2 388 m2 g−1),并表现出良好的润湿性。同时,OPCN-700样品丰富的微孔和二维纳米片结构为电解质离子提供了有效的储存和传输途径。作为超级电容器的电极材料,在电流密度为0.5 A g−1时,其比电容高达382 F g−1,并呈现出优异的倍率性能和循环稳定性。该技术策略为富氧原子掺杂二维多孔炭材料的可控制备与水系储能器件的设计构建提供了新思路。
  • FIG. 2777.  FIG. 2777.

    FIG. 2777..  FIG. 2777.

    图  1  (a) MgAl-LDH, (b) PC-700和(c-d) OPCN-700的SEM照片; (e-f) OPCN-700的TEM照片

    Figure  1.  SEM images of (a) MgAl-LDH, (b) PC-700 and (c, d) OPCN-700 and TEM images of (e, f) OPCN-700

    图  2  (a) XRD谱图; (b) Raman光谱图; (c)氮气吸附/脱附曲线; (d)孔径分布图; (e) PC-700和OPCN-700的全谱图; (f) OPCN-700的C1s和O1s谱图

    Figure  2.  (a) XRD patterns; (b) Raman spectra; (c) N2 adsorption / desorption curves; (d) pore size distributions; (e) XPS spectra of PC-700 and OPCN-700; and (f) C1s and O1s high-resolution spectra of OPCN-700

    图  3  (a)炭材料样品的O质量分数; (b) PC-700; (c) OPCN-600; (d) OPCN-700; (e) OPCN-800; (f) OPCN-900的接触角测试

    Figure  3.  (a) The O content of as-prepared carbon samples and contact angle test of (b) PC-700; (c)OPCN-600; (d) OPCN-700; (e) OPCN-800; (f) OPCN-900

    图  4  (a)炭材料样品在10 mV s−1扫速下的CV曲线; (b) OPCN-700的CV曲线; (c) OPCN-700的GCD曲线; (d)不同电流密度下的比电容; (e)电化学阻抗图谱; (f) OPCN-700的循环性能

    Figure  4.  (a) CV curves of carbon samples at scanning rate of 10 mV s−1; (b) CV curves of OPCN-700; (c) GCD curves of OPCN-700; (d) the specific capacitances of carbon samples at different current density; (e) nyquist plots of carbon samples; and (f) cyclic performance of OPCN-700

    表  1  富氧多孔炭纳米片OPCN-x及多孔炭PC-700的孔隙结构参数

    Table  1.   Pore structure parameters of OPCN-x and PC-700

    SamplesSBET/(m2 g−1)Smicro/(m2 g−1)Vtotal/(cm3 g−1)Vmicro/(cm3 g−1)Daver/nm
    PC-700197818551.0110.8762.04
    OPCN-600210619691.0780.9362.05
    OPCN-700238822711.1981.0722.00
    OPCN-800223619991.0380.8291.86
    OPCN-900293022981.6221.0882.21
    下载: 导出CSV
  • [1] Shaker M, Ghazvini A A S, 曹蔚琦, 等. 超级电容器用生物质基多孔炭的研究进展[J]. 新型炭材料,2021,36(3):546-572. doi: 10.1016/S1872-5805(21)60038-0

    Shaker M, Ghazvini A A S, Cao W Q, et al. Biomass-derived porous carbons as supercapacitor electrodes-a review[J]. New Carbon Materials,2021,36(3):546-572. doi: 10.1016/S1872-5805(21)60038-0
    [2] 王满, 车晓刚, 刘思宇, 等. 锌离子电容器用碳基正极材料的研究进展[J]. 新型炭材料,2021,36(1):155-166. doi: 10.19869/j.ncm.1007-8827.20200264

    Wang M, Che X G, Liu S Y, et al. A review of carbon-based cathode materials for zinc-ion capacitors[J]. New Carbon Materials,2021,36(1):155-166. doi: 10.19869/j.ncm.1007-8827.20200264
    [3] Wang M, Yang J, Jia K, et al. Boosting supercapacitor performance of graphene by coupling with nitrogen-doped hollow carbon frameworks[J]. Chemistry,2020,26(13):2897-2903. doi: 10.1002/chem.201904701
    [4] Huang G, Geng Q, Xing B, et al. Manganous nitrate -assisted potassium hydroxide activation of humic acid to prepare oxygen-rich hierarchical porous carbon as high-performance supercapacitor electrodes[J]. Journal of Power Sources,2020,449:227506. doi: 10.1016/j.jpowsour.2019.227506
    [5] Li J, Liu W, Xiao D, et al. Oxygen-rich hierarchical porous carbon made from pomelo peel fiber as electrode material for supercapacitor[J]. Applied Surface Science,2017,416:918-924. doi: 10.1016/j.apsusc.2017.04.162
    [6] Gür E, Semerci T G, Semerci F. Sugar beet pulp derived oxygen-rich porous carbons for supercapacitor applications[J]. Journal of Energy Storage,2022,51:104363. doi: 10.1016/j.est.2022.104363
    [7] Gou Q, Zhao S, Wang J, et al. Recent advances on boosting the cell voltage of aqueous supercapacitors[J]. Nanomicro Lett,2020,12(1):98.
    [8] Guo T, Zhou D, Pang L, et al. Perspectives on working voltage of aqueous supercapacitors[J]. Small,2022,18(16):e2106360. doi: 10.1002/smll.202106360
    [9] Zhang X, Sun B, Fan X, et al. Building relationships between molecular composition of carbon precursor and capacitance of a hierarchical porous carbon-based supercapacitor[J]. ACS Applied Energy Materials,2021,4(1):985-995. doi: 10.1021/acsaem.0c02915
    [10] Xia L, Huang H, Fan Z, et al. Hierarchical macro-/meso-/microporous oxygen-doped carbon derived from sodium alginate: A cost-effective biomass material for binder-free supercapacitors[J]. Materials & Design,2019,182:108048.
    [11] Zhang D, He C, Wang Y, et al. Oxygen-rich hierarchically porous carbons derived from pitch-based oxidized spheres for boosting the supercapacitive performance[J]. Journal of Colloid and Interface Science,2019,540:439-447. doi: 10.1016/j.jcis.2019.01.038
    [12] Ma C, Chen X, Long D, et al. High-surface-area and high-nitrogen-content carbon microspheres prepared by a pre-oxidation and mild KOH activation for superior supercapacitor[J]. Carbon,2017,118:699-708. doi: 10.1016/j.carbon.2017.03.075
    [13] Jiang Y, He Z, Du Y, et al. In-situ ZnO template preparation of coal tar pitch-based porous carbon-sheet microsphere for supercapacitor[J]. J Colloid Interface Sci,2021,602:721-731. doi: 10.1016/j.jcis.2021.06.037
    [14] Hou J, Cao C, Idrees F, et al. Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors[J]. ACS Nano,2015,9(3):2556-2564. doi: 10.1021/nn506394r
    [15] Huo S, Zhao Y, Zong M, et al. Boosting supercapacitor and capacitive deionization performance of hierarchically porous carbon by polar surface and structural engineering[J]. Journal of Materials Chemistry A,2020,8(5):2505-2517. doi: 10.1039/C9TA12170F
    [16] Wang M, Yang J, Liu S, et al. Nitrogen-doped hierarchically porous carbon nanosheets derived from polymer/graphene oxide hydrogels for high-performance supercapacitors[J]. Journal of Colloid and Interface Science,2020,560:69-76. doi: 10.1016/j.jcis.2019.10.037
    [17] Lu Y, Li Z, Bai Z, et al. High energy-power Zn-ion hybrid supercapacitors enabled by layered B/N co-doped carbon cathode[J]. Nano Energy,2019,66:104132. doi: 10.1016/j.nanoen.2019.104132
    [18] Yu J, Wang Q, O'Hare D, et al. Preparation of two dimensional layered double hydroxide nanosheets and their applications[J]. Chemical Society Reviews,2017,46(19):5950-5974. doi: 10.1039/C7CS00318H
    [19] Elgendy A, El Basiony N M, El-Taib Heakal F, et al. Mesoporous Ni-Zn-Fe layered double hydroxide as an efficient binder-free electrode active material for high-performance supercapacitors[J]. Journal of Power Sources,2020,466:228294. doi: 10.1016/j.jpowsour.2020.228294
    [20] Zeng M, Wu J, Li Z, et al. Interlayer effect in NiCo layered double hydroxide for promoted electrocatalytic urea oxidation[J]. ACS Sustainable Chemistry & Engineering,2019,7(5):4777-4783.
    [21] Jia H, Wang Z, Zheng X, et al. Interlaced Ni-Co LDH nanosheets wrapped Co9S8 nanotube with hierarchical structure toward high performance supercapacitors[J]. Chemical Engineering Journal,2018,351:348-355. doi: 10.1016/j.cej.2018.06.113
    [22] Yang J, Liu S, Wang M, et al. Fabrication of porous carbon nanosheets with the engineered graphitic structure for electrochemical supercapacitors[J]. Industrial & Engineering Chemistry Research,2020,59(30):13623-13630.
    [23] Gawande M B, Fornasiero P, Zbořil R. Carbon-based single-atom catalysts for advanced applications[J]. ACS Catalysis,2020,10(3):2231-2259. doi: 10.1021/acscatal.9b04217
    [24] Valero-Romero M J, Rodríguez-Cano M Á, Palomo J, et al. Carbon-based materials as catalyst supports for fischer–tropsch synthesis: A review[J]. Frontiers in Materials, 2021, 7.
    [25] 李可可, 刘国阳, 郑莉思, 等. 煤基炭纳米材料的构筑及其在储能领域的应用[J]. 新型炭材料,2021,36(1):133-154. doi: 10.1016/S1872-5805(21)60010-0

    Li K K, Liu G Y , Zheng L S, et al. Coal-derived carbon nanomaterials for sustainable energy storage applications[J]. New Carbon Materials,2021,36(1):133-154. doi: 10.1016/S1872-5805(21)60010-0
    [26] 贺怡婷, 李肖, 杨桃, 等. 沥青/聚丙烯腈复合纳米炭纤维无纺布的制备及其电容性能[J]. 新型炭材料,2021,36(1):227-234. doi: 10.19869/j.ncm.1007-8827.20180141

    He Y T, Li X, Yang T, et al. Preparation of pitch/polyacrylonitrile carbon nanofiber non-woven fabrics as the electrode for supercapacitors[J]. New Carbon Materials,2021,36(1):227-234. doi: 10.19869/j.ncm.1007-8827.20180141
    [27] Hu H, Wu M. Heavy oil-derived carbon for energy storage applications[J]. Journal of Materials Chemistry A,2020,8(15):7066-7082. doi: 10.1039/D0TA00095G
    [28] 任博阳, 车晓刚, 刘思宇, 等. 熔融盐法制备煤基多孔炭纳米片用于钠离子电池负极[J]. 化工学报,2022,73(10):4745-4753.

    Ren B Y, Che X G, Liu S Y, et al. Preparation of coal-based porous carbon nanosheets by molten salt strategy as anodes for sodium-ion batteries[J]. CIESC Journal,2022,73(10):4745-4753.
    [29] Sekhon S S, Park J S. Biomass-derived N-doped porous carbon nanosheets for energy technologies[J]. Chemical Engineering Journal,2021,425:129017. doi: 10.1016/j.cej.2021.129017
    [30] Zhang H, He X, Gu J, et al. Wrinkled porous carbon nanosheets from methylnaphthalene oil for high-performance supercapacitors[J]. Fuel Processing Technology,2018,175:10-16. doi: 10.1016/j.fuproc.2018.03.001
    [31] Hérou S, Crespo Ribadeneyra M, Schlee P, et al. The impact of having an oxygen-rich microporous surface in carbon electrodes for high-power aqueous supercapacitors[J]. Journal of Energy Chemistry,2021,53:36-48. doi: 10.1016/j.jechem.2020.04.068
    [32] Meng S, Mo Z, Li Z, et al. Oxygen-rich porous carbons derived from alfalfa flowers for high performance supercapacitors[J]. Materials Chemistry and Physics,2020,246:122830. doi: 10.1016/j.matchemphys.2020.122830
  • -20230604Supporting Information.pdf
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  336
  • HTML全文浏览量:  176
  • PDF下载量:  125
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-17
  • 录用日期:  2023-06-07
  • 修回日期:  2023-06-07
  • 网络出版日期:  2023-06-13
  • 刊出日期:  2023-11-23

目录

    /

    返回文章
    返回