留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A universal strategy for producing 2D functional carbon-rich materials from 2D porous organic polymers for dual-carbon lithium-ion capacitors

XIN Xiao-yu ZHAO Bin YUE Jin-shu KONG De-bin ZHOU Shan-ke HUANG Xiao-xiong WANG Bin ZHI Lin-jie XIAO Zhi-chang

辛晓雨, 赵斌, 岳金书, 孔德斌, 周善柯, 黄小雄, 王斌, 智林杰, 肖志昌. 基于二维多孔有机聚合物制备二维功能化富炭材料的普适性策略及双炭锂离子电容器应用. 新型炭材料(中英文), 2023, 38(5): 898-912. doi: 10.1016/S1872-5805(23)60760-7
引用本文: 辛晓雨, 赵斌, 岳金书, 孔德斌, 周善柯, 黄小雄, 王斌, 智林杰, 肖志昌. 基于二维多孔有机聚合物制备二维功能化富炭材料的普适性策略及双炭锂离子电容器应用. 新型炭材料(中英文), 2023, 38(5): 898-912. doi: 10.1016/S1872-5805(23)60760-7
XIN Xiao-yu, ZHAO Bin, YUE Jin-shu, KONG De-bin, ZHOU Shan-ke, HUANG Xiao-xiong, WANG Bin, ZHI Lin-jie, XIAO Zhi-chang. A universal strategy for producing 2D functional carbon-rich materials from 2D porous organic polymers for dual-carbon lithium-ion capacitors. New Carbon Mater., 2023, 38(5): 898-912. doi: 10.1016/S1872-5805(23)60760-7
Citation: XIN Xiao-yu, ZHAO Bin, YUE Jin-shu, KONG De-bin, ZHOU Shan-ke, HUANG Xiao-xiong, WANG Bin, ZHI Lin-jie, XIAO Zhi-chang. A universal strategy for producing 2D functional carbon-rich materials from 2D porous organic polymers for dual-carbon lithium-ion capacitors. New Carbon Mater., 2023, 38(5): 898-912. doi: 10.1016/S1872-5805(23)60760-7

基于二维多孔有机聚合物制备二维功能化富炭材料的普适性策略及双炭锂离子电容器应用

doi: 10.1016/S1872-5805(23)60760-7
基金项目: 国家自然科学基金(22005084,U20A20131);河北省教育厅科学技术研究项目(BJK2023021);河北省自然科学基金(E2019204131);河北农业大学引进人才项目(YJ201819)
详细信息
    通讯作者:

    智林杰,教授. E-mail:zhilj@nanoctr.cn

    肖志昌,教授. E-mail:xiaozhichangcnu@sina.cn

  • 中图分类号: 127.1+1

A universal strategy for producing 2D functional carbon-rich materials from 2D porous organic polymers for dual-carbon lithium-ion capacitors

More Information
  • 摘要: 二维炭材料引起了研究人员广泛的关注,然而,其复杂的合成方法、非均匀的结构以及难以精确控制的性质限制了这一形貌控制科学的发展。本研究开发了一种普适性的制备方法,通过简便的化学交联反应,利用吡咯和吲哚作为氮源,3,4-乙烯二氧噻吩作为硫源,制备了一系列杂原子掺杂的二维多孔聚合物。这种自下而上的策略能够实现高杂原子含量、丰富孔性结构和超薄厚度的功能化炭纳米片的大规模合成。因此,所得到的氮掺杂炭纳米片作为锂离子电容器负极,在5 A g−1条件下表现出573.4 mAh g−1的比容量,而经优化的氮掺杂炭纳米片作为锂离子电容器正极,在5 A g−1条件下表现出100.0 F g−1的比电容。基于此,开发了一种双碳离子电容器,在400 W kg−1条件下,168.4 Wh kg−1的能量密度,循环10000次后循环稳定性保持在86.3%。值得注意的是,这种自下而上的策略为大规模精确定制具有目标结构和性质的二维功能化炭纳米片开辟了新途径。
  • FIG. 2653.  FIG. 2653.

    FIG. 2653..  FIG. 2653.

    Figure  1.  Exploration for the formation mechanism of the NPNs: (a) Illustration for synthesis of heteroatom-doped 2D porous polymer and porous carbon-rich materials; (b)-(c) SEM images of CNPNs at different magnifications; (d)-(f) element mapping images of aluminum and oxygen; (g) element content analysis of CNPNs

    Figure  2.  Universality for constructing 2D porous organic polymers: (a, b) SEM images of indole-NPNs under different magnification settings; (c, d) SEM images of indole-NCNs at different magnifications; (e) AFM image of indole-NCNs; (f, g) SEM images of EDOT-SPNs under different magnification settings; (h, i) SEM images of EDOT-SCNs at different magnifications; (j) AFM image of EDOT-SCNs

    Figure  3.  Chemical structure of pyrrole-based 2D materials: (a) FTIR spectra; (b) 13C solid state NMR spectra; High-resolution N1s spectra of (c) NPNs and (d) NCNs

    Figure  4.  Nitrogen adsorption/desorption isotherms at 77.3 K of (a) NPNs and NCNs, (b) ANCNs. Insets show the pore-size distribution results based on the DFT model; (c) HRTEM image; (d) Dark-field TEM and elemental mapping images of NPNs; (e) AFM image of NCNs

    Figure  5.  EDLC performance of ANCNs: (a) CV curves at a scan rate of 100 mV s−1 ; (b) GCD profiles at 0.5 A g−1; (c) EIS curves. Supercapacitor performance based on ANCNs-3: (d) CV curves at scan rates from 2 to 100 mV s−1; (e) GCD profiles from 0.2 to 5 A g−1; (f) long-term cycling performance for 10000 cycles at 2 A g−1

    Figure  6.  (a) Schematic illustration, (b) CV curves at different scan rates and (c) GCD profiles of the NCNs//ANCNs-3 LIC; (d) Comparative analysis of Ragone plots: NCNs//ANCNs dual-carbon LIC versus previously reported dual-carbon LICs; (e) long-term cycling stability at 2 A g−1 (insets are the GCD profiles of the first three and last three cycles); (f) the digital photograph of an LED panel powered by the NCNs// ANCNs-3 LIC

  • [1] Kang J, Huang S, Jiang K, et al. 2D porous polymers with sp2-carbon connections and sole sp2-carbon skeletons[J]. Advanced Functional Materials,2020,30:2000857. doi: 10.1002/adfm.202000857
    [2] Choi S H, Yun S J, Won Y S, et al. Large-scale synthesis of graphene and other 2D materials towards industrialization[J]. Nature Communications,2022,13:1484. doi: 10.1038/s41467-022-29182-y
    [3] Yang L, Chen W, Yu Q, et al. Mass production of two-dimensional materials beyond graphene and their applications[J]. Nano Research,2020,14:1583-1597.
    [4] Zhang T, Zhang G, Chen L. 2D conjugated covalent organic frameworks: Defined synthesis and tailor-made functions[J]. Accounts of Chemical Research,2022,55:795-808. doi: 10.1021/acs.accounts.1c00693
    [5] Li S, Cheng C, Liang H W, et al. 2D porous carbons prepared from layered organic-inorganic hybrids and their use as oxygen-reduction electrocatalysts[J]. Advanced Materials,2017,29:1700707. doi: 10.1002/adma.201700707
    [6] Sun Z, Hu Y H. Ultrafast, low-cost, and mass production of high-quality graphene[J]. Angewandte Chemie International Edition,2020,59:9232-9234. doi: 10.1002/anie.202002256
    [7] Mou X, Xin X, Dong Y, et al. Molecular design of porous organic polymer-derived carbonaceous electrocatalysts for pinpointing active sites in oxygen reduction reaction[J]. Molecules,2023,28:4160. doi: 10.3390/molecules28104160
    [8] Yu M, Dong R, Feng X. Two-dimensional carbon-rich conjugated frameworks for electrochemical energy applications[J]. Journal of the American Chemical Society,2020,142:12903-12915. doi: 10.1021/jacs.0c05130
    [9] Gao T N, Wang T, Wu W, et al. Solvent-induced self-assembly strategy to synthesize well-defined hierarchically porous polymers[J]. Advanced Materials,2019,31:1806254. doi: 10.1002/adma.201806254
    [10] Wang H, Shao Y, Mei S, et al. Polymer-derived heteroatom-doped porous carbon materials[J]. Chemical Reviews,2020,120:9363-9419. doi: 10.1021/acs.chemrev.0c00080
    [11] Liu S, Gordiichuk P, Wu Z S, et al. Patterning two-dimensional free-standing surfaces with mesoporous conducting polymers[J]. Nature Communications,2015,6:8817. doi: 10.1038/ncomms9817
    [12] Wang S, Zhang C, Shu Y, et al. Layered microporous polymers by solvent knitting method[J]. Science Advances,2017,3:1602610. doi: 10.1126/sciadv.1602610
    [13] Divya M L, Lee Y S, Aravindan V. Solvent co-intercalation: An emerging mechanism in Li-, Na- and K-ion capacitors[J]. ACS Energy Letters,2021,6:4228-4244. doi: 10.1021/acsenergylett.1c01801
    [14] Wu X, Meng X, Ding J, et al. Preparation of core-shell structured amorphous aluminum hydroxide ultra-fine powders via a microwave-hydrothermal route[J]. Materials Letters,2011,65:2133-2135. doi: 10.1016/j.matlet.2011.04.072
    [15] Kong D, Gao Y, Xiao Z, et al. Rational design of carbon-rich materials for energy storage and conversion[J]. Advanced Materials, 2018, e1804973.
    [16] Li B, Gong R, Wang W, et al. A new strategy to microporous polymers: Knitting rigid aromatic building blocks by external cross-linker[J]. Macromolecules,2011,44:2410-2414. doi: 10.1021/ma200630s
    [17] Sun Y, Wang T, Li A, et al. Knitting N-doped hierarchical porous polymers to stabilize ultra-small pd nanoparticles for solvent-free catalysis[J]. Chemistry-an Asian Journal,2017,12:3039-3045. doi: 10.1002/asia.201701104
    [18] Gang X, Krishnamoorthy M, Jiang W, et al. A novel in-situ preparation of N-rich spherical porous carbon as greatly enhanced material for high-performance supercapacitors[J]. Carbon,2021,171:62-71. doi: 10.1016/j.carbon.2020.09.004
    [19] Niu P, Yang Y, Li Z, et al. Rational design of a hollow porous structure for enhancing diffusion kinetics of K ions in edge-nitrogen doped carbon nanorods[J]. Nano Research,2022,15:8109-8117. doi: 10.1007/s12274-022-4496-y
    [20] Liu Y, Zhen Y, Li T, et al. High-capacity, dendrite-free, and ultrahigh-rate lithium-metal anodes based on monodisperse N-doped hollow carbon nanospheres[J]. Small,2020,16:2004770. doi: 10.1002/smll.202004770
    [21] Yang P, Li T, Li H, et al. Progress in the graphitization and applications of modified resin carbons[J]. New Carbon Materials,2023,38:96-108.
    [22] Qin D, Wang L, Zeng X, et al. Tailored edge-heteroatom tri-doping strategy of turbostratic carbon anodes for high-rate performance lithium and sodium-ion batteries[J]. Energy Storage Materials,2023,54:498-507. doi: 10.1016/j.ensm.2022.10.049
    [23] Ye X L, Huang Y Q, Tang X Y, et al. Two-dimensional extended π-conjugated triphenylene-core covalent organic polymer[J]. Journal of Materials Chemistry A,2019,7:3066-3071. doi: 10.1039/C8TA10554E
    [24] Ye F, Gong L, Long Y, et al. Topological defect-rich carbon as a metal-free cathode catalyst for high-performance Li-CO2 batteries[J]. Advanced Energy Materials,2021,11:2101390. doi: 10.1002/aenm.202101390
    [25] Liu M, Wu F, Zheng L, et al. Nature-inspired porous multichannel carbon monolith: Molecular cooperative enables sustainable production and high-performance capacitive energy storage[J]. InfoMat,2021,3:1154-1170. doi: 10.1002/inf2.12231
    [26] Mao W, Yue W, Xu Z, et al. Development of a synergistic activation strategy for the pilot-scale construction of hierarchical porous graphitic carbon for energy storage applications[J]. ACS Nano,2020,14:4741-4754. doi: 10.1021/acsnano.0c00620
    [27] Lee J M, Briggs M E, Hasell T, et al. Hyperporous carbons from hypercrosslinked polymers[J]. Advanced Materials,2016,28:9804-9810. doi: 10.1002/adma.201603051
    [28] Shang M, Zhang J, Liu X, et al. N, S self-doped hollow-sphere porous carbon derived from puffball spores for high performance supercapacitors[J]. Applied Surface Science,2021,542:148697. doi: 10.1016/j.apsusc.2020.148697
    [29] Bi H, He X, Zhang H, et al. N, P co-doped hierarchical porous carbon from rapeseed cake with enhanced supercapacitance[J]. Renewable Energy,2021,170:188-196. doi: 10.1016/j.renene.2021.01.099
    [30] Wei Y C, Zhou J, Yang L, et al. N/S co-doped interconnected porous carbon nanosheets as high-performance supercapacitor electrode materials[J]. New Carbon Materials,2022,37:707-715. doi: 10.1016/S1872-5805(22)60595-X
    [31] Wang K, Xu Y, Wu H, et al. A hybrid lithium storage mechanism of hard carbon enhances its performance as anodes for lithium-ion batteries[J]. Carbon,2020,178:443-450.
    [32] Wei F, Bi H, Jiao S, et al. Interconnected graphene-like nanosheets for supercapacitors[J]. Acta Physico-Chimica Sinica,2020,36:1903043. doi: 10.3866/PKU.WHXB201903043
    [33] Wei F, He X, Ma L, et al. 3D N, O-codoped egg-box-like carbons with tuned channels for high areal capacitance supercapacitors[J]. Nano-Micro Letters,2020,12:82. doi: 10.1007/s40820-020-00416-2
    [34] Li G, Yang Z, Yin Z, et al. A review on non-aqueous dual-carbon lithium-ion capacitors[J]. Journal of Materials Chemistry A,2019,7:15541-15563. doi: 10.1039/C9TA01246J
    [35] Zou K, Deng Y, Wu W, et al. A novel eutectic solvent precursor for efficiently preparing N-doped hierarchically porous carbon nanosheets with unique surface functional groups and micropores towards dual-carbon lithium-ion capacitors[J]. Journal of Materials Chemistry A,2021,9:13631-13641. doi: 10.1039/D1TA03071J
    [36] Qian T, Huang Y, Zhang M, et al. Non-corrosive and low-cost synthesis of hierarchically porous carbon frameworks for high-performance lithium-ion capacitors[J]. Carbon,2021,173:646-654. doi: 10.1016/j.carbon.2020.11.051
    [37] Zhao X, Zhang X, Li C, et al. High-performance lithium-ion capacitors based on CoO-graphene composite anode and holey carbon nanolayer cathode[J]. ACS Sustainable Chemistry & Engineering,2019,7:11275-11283.
    [38] Yang Y, Lin Q, Ding B, et al. Lithium-ion capacitor based on nanoarchitectured polydopamine/graphene composite anode and porous graphene cathode[J]. Carbon,2020,167:627-633. doi: 10.1016/j.carbon.2020.05.077
    [39] Yan W, Yu F, Jiang Y, et al. Self-assembly construction of carbon nanotube network-threaded tetrathiafulvalene-bridging covalent organic framework composite anodes for high-performance hybrid lithium-ion capacitors[J]. Small Structures,2022,3:2200126. doi: 10.1002/sstr.202200126
    [40] Wang C W, Yang D J, Huang S, et al. Multi-stage explosion of lignin: A new horizon for constructing defect-rich carbon towards advanced lithium ion storage[J]. Green Chemistry,2022,24:5941-5951. doi: 10.1039/D2GC01635D
    [41] Luo J, Zhang W, Yuan H, et al. Pillared structure design of Mxene with ultralarge interlayer spacing for high-performance lithium-ion capacitors[J]. ACS Nano,2017,11:2459-2469. doi: 10.1021/acsnano.6b07668
    [42] Ma Y, Wang K, Xu Y, et al. Dehalogenation produces graphene wrapped carbon cages as fast-kinetics and large-capacity anode for lithium-ion capacitors[J]. Carbon,2023,202:175-185. doi: 10.1016/j.carbon.2022.11.030
    [43] Zhou S, Chiang C L, Zhao J, et al. Extra storage capacity enabled by structural defects in pseudocapacitive NbN monocrystals for high-energy hybrid supercapacitors[J]. Advanced Functional Materials,2022,32:2112592. doi: 10.1002/adfm.202112592
    [44] Li G, Huang Y, Yin Z, et al. Defective synergy of 2D graphitic carbon nanosheets promotes lithium-ion capacitors performance[J]. Energy Storage Materials,2020,24:304-311. doi: 10.1016/j.ensm.2019.07.046
  • 20230508supportting imformation.pdf
  • 加载中
图(7)
计量
  • 文章访问数:  283
  • HTML全文浏览量:  103
  • PDF下载量:  82
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-06
  • 录用日期:  2023-06-12
  • 修回日期:  2023-06-08
  • 网络出版日期:  2023-06-16
  • 刊出日期:  2023-10-01

目录

    /

    返回文章
    返回