留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Deposition of MnO2 on KOH-activated laser-produced graphene for a flexible planar micro-supercapacitor

XI Shuang GAO Xing-wei CHENG Xi-ming LIU Hui-long

习爽, 高兴伟, 程溪明, 刘辉龙. 在KOH活化的激光诱导石墨烯上沉积MnO2用于柔性平面微型超级电容器. 新型炭材料(中英文), 2023, 38(5): 913-924. doi: 10.1016/S1872-5805(23)60769-3
引用本文: 习爽, 高兴伟, 程溪明, 刘辉龙. 在KOH活化的激光诱导石墨烯上沉积MnO2用于柔性平面微型超级电容器. 新型炭材料(中英文), 2023, 38(5): 913-924. doi: 10.1016/S1872-5805(23)60769-3
XI Shuang, GAO Xing-wei, CHENG Xi-ming, LIU Hui-long. Deposition of MnO2 on KOH-activated laser-produced graphene for a flexible planar micro-supercapacitor. New Carbon Mater., 2023, 38(5): 913-924. doi: 10.1016/S1872-5805(23)60769-3
Citation: XI Shuang, GAO Xing-wei, CHENG Xi-ming, LIU Hui-long. Deposition of MnO2 on KOH-activated laser-produced graphene for a flexible planar micro-supercapacitor. New Carbon Mater., 2023, 38(5): 913-924. doi: 10.1016/S1872-5805(23)60769-3

在KOH活化的激光诱导石墨烯上沉积MnO2用于柔性平面微型超级电容器

doi: 10.1016/S1872-5805(23)60769-3
基金项目: 广东省自然科学基金(2022A1515011334);国家自然科学基金(52205457)
详细信息
    通讯作者:

    习 爽,博士,副教授. E-mail:shuangxi@njfu.edu.cn

    刘辉龙,博士,副教授. E-mail:huilong.liu@gdut.edu.cn

  • 中图分类号: 127.1+1

Deposition of MnO2 on KOH-activated laser-produced graphene for a flexible planar micro-supercapacitor

Funds: This work was financially supported by the Natural Science Foundation of Guangdong Province, China (2022A1515011334) and National Natural Science Foundation of China (52205457)
More Information
  • 摘要: 柔性超级电容器具有超高的功率密度和超长的循环寿命,结合其结构的灵活性、轻质和形状多样性的特点,在储能领域具有巨大的应用潜力。发展柔性超级电容器首先要解决柔性电极制备的难题。本研究通过激光直写技术结合KOH活化得到高柔性、高导电性的微孔石墨烯基底,即活化的激光诱导石墨烯(a-LIG),然后用电化学沉积法在其上沉积二氧化锰,成功开发出柔性a-LIG/MnO2电极。在1 mol/L的Na2SO4电解质中,当电流密度为1 mA/cm2时,复合a-LIG/MnO2电极表现出304.61 mF/cm2的高面积比电容。以a-LIG/MnO2为阳极,a-LIG为阴极,PVA/H3PO4为凝胶电解质,组装了柔性非对称超级电容器,在功率密度为260.28 μW/cm2时其面积能量密度为2.61 μWh/cm2,在电流密度为0.2 mA/cm2时其面积比电容为18.82 mF/cm2,且5000次循环后电容保持率达到90.28%。此外,柔性a-LIG/MnO2@a-LIG器件在弯曲状态下也表现出优异的电化学性能。这项工作为合理设计高性能的柔性超级电容器电极提供了一种简单和可扩展的方法,并可能为大规模制造平面柔性超级电容器提供新的途径。
  • FIG. 2654.  FIG. 2654.

    FIG. 2654..  FIG. 2654.

    Figure  1.  Schematic diagram of the fabrication process of flexible planar a-LIG/MnO2@a-LIG MSC on PI precursor

    Figure  2.  (a) Raman spectra of LIG, a-LIG and a-LIG/MnO2. (b) XRD patterns of a-LIG and a-LIG/MnO2. (c) XPS survey, (d) C 1s spectra, (e) N 1s spectra and (f) Mn 2p spectra of a-LIG/MnO2

    Figure  3.  SEM images of (a, d) LIG, (b, e) a-LIG and (c, f) a-LIG/MnO2

    Figure  4.  TEM images of (a) LIG, (b) a-LIG and (c) a-LIG/MnO2. (d-f) HRTEM images of a-LIG/MnO2

    Figure  5.  Electrochemical performance of a-LIG-X/MnO2 electrode treated with different KOH concentrations. (a) CV curves at scan rate of 20 mV/s. (b) GCD curves at current density of 1 mA/cm2. (c) Specific areal capacitance in the current density range of 1 to 5 mA/cm2

    Figure  6.  Electrochemical performance of a-LIG/MnO2-Y electrode treated with different KOH concentrations. (a) CV curves at scan rate of 20 mV/s. (b) GCD curves at current density of 1 mA/cm2. (c) Specific areal capacitance in the current density range of 1 to 5 mA/cm2

    Figure  7.  Electrochemical properties of a-LIG/MnO2@a-LIG MSC. (a) CV curves at a scan rate of 10-100 mV/s. (b) GCD curves at current density range of 0.1-0.5 mA/cm2. (c) Nyquist plots of a-LIG/MnO2@a-LIG MSC with/without KOH treatment, the inset shows the enlarged area. (d) Cycling stability at 0.2 mA/cm2 current density

    Figure  8.  Flexibility test of a-LIG/MnO2@a-LIG MSC. (a) Bending photograph of the device. The angle marked as θ in the image is defined as the bending angle, (b) CV curves for different degrees of bending from 0°-180°, (c) GCD curves for different degrees of bending from 0°-180°, (d) Ragone plots of a-LIG/MnO2@a-LIG MSC and MSC devices with LIG-based electrodes of various electrolytes. Data are reproduced from ref. (N-LIG-SC), ref. (MoS2-LIG), (S-LIG-SC), ref. (LIG-O2), ref.(B-LIG), and ref. (LIG)

  • [1] Bao J, Lin N, Guo J, et al. Effects of nano-SiO2 doped PbO2 as the positive electrode on the performance of lead-carbon hybrid capacitor[J]. Journal of Colloid and Interface Science,2020,574:377-384. doi: 10.1016/j.jcis.2020.03.082
    [2] Zhang M, Dong L, Zhang C, et al. Heterogeneous nucleation of Li3VO4 regulated in dense graphene aerogel for lithium ion capacitors[J]. Journal of Power Sources,2020,468:228364. doi: 10.1016/j.jpowsour.2020.228364
    [3] Jiang H, Wang S, Zhang B, et al. High performance lithium-ion capacitors based on LiNbO3-arched 3D graphene aerogel anode and BCNNT cathode with enhanced kinetics match[J]. Chemical Engineering Journal,2020,396:125207. doi: 10.1016/j.cej.2020.125207
    [4] Clerici F, Fontana M, Bianco S, et al. In situ MoS2 decoration of laser-induced graphene as flexible supercapacitor electrodes[J]. ACS Applied Materials & Interfaces,2016,8(16):10459-10465.
    [5] Kang S H, Kim I G, Kim B N, et al. Facile fabrication of flexible in‐plane graphene micro‐supercapacitor via flash reduction[J]. ETRI Journal,2018,40(2):275-282. doi: 10.4218/etrij.2017-0242
    [6] Zhao Y, Liu C, Lu Q, et al. Recent progress on freestanding carbon electrodes for flexible supercapacitors[J]. New Carbon Materials,2022,37(5):875-897. doi: 10.1016/S1872-5805(22)60637-1
    [7] Kong K, Xue W, Zhu W, et al. The fabrication of bowl-shaped polypyrrole/graphene nanostructural electrodes and its application in all-solid-state supercapacitor devices[J]. Journal of Power Sources,2020,470:228452. doi: 10.1016/j.jpowsour.2020.228452
    [8] Zhang L, DeArmond D, Alvarez N T, et al. Flexible micro‐supercapacitor based on graphene with 3D structure[J]. Small,2017,13(10):1603114. doi: 10.1002/smll.201603114
    [9] Zaccagnini P, di Giovanni D, Gomez M G, et al. Flexible and high temperature supercapacitor based on laser-induced graphene electrodes and ionic liquid electrolyte, a de-rated voltage analysis[J]. Electrochimica Acta,2020,357:136838. doi: 10.1016/j.electacta.2020.136838
    [10] Tran T X, Choi H, Che C H, et al. Laser-induced reduction of graphene oxide by intensity-modulated line beam for supercapacitor applications[J]. ACS Applied Materials & Interfaces,2018,10(46):39777-39784.
    [11] Nan H, Liu M, Zhang W, et al. One-step synthesis of NiCo2S4 with high electrochemical performance used for hybrid capacitor[J]. Journal of Alloys and Compounds,2020,832:155037. doi: 10.1016/j.jallcom.2020.155037
    [12] Liu Z, Wang H I, Narita A, et al. Photoswitchable micro-supercapacitor based on a diarylethene-graphene composite film[J]. Journal of the American Chemical Society,2017,139(28):9443-9446. doi: 10.1021/jacs.7b04491
    [13] Selvakumar M, De S, Chidangil S, et al. Laser induced graphene with biopolymer electrolyte for supercapacitor applications[J]. Materials Today:Proceedings,2022,48:365-370. doi: 10.1016/j.matpr.2020.08.791
    [14] Liu M, Wu J N, Cheng H Y. Effects of laser processing parameters on properties of laser-induced graphene by irradiating CO2 laser on polyimide[J]. Science China Technological Sciences,2022,65(1):41-52. doi: 10.1007/s11431-021-1918-8
    [15] Mikheev K G, Zonov R G, Mogileva T N, et al. Optical anisotropy of laser-induced graphene films[J]. Optics & Laser Technology,2021,141:107143.
    [16] Kim K Y, Choi H, Van Tran C, et al. Simultaneous densification and nitrogen doping of laser-induced graphene by duplicated pyrolysis for supercapacitor applications[J]. Journal of Power Sources,2019,441:227199. doi: 10.1016/j.jpowsour.2019.227199
    [17] Li H, Shen H, Shi Y, et al. Progress and prospects of graphene for in-plane micro-supercapacitors[J]. New Carbon Materials,2022,37(5):781-801. doi: 10.1016/S1872-5805(22)60640-1
    [18] Wang M, Chen J, Lu K, et al. Preparation of high-performance flexible microsupercapacitors based on papermaking and laser-induced graphene techniques[J]. Electrochimica Acta,2022,401:139490. doi: 10.1016/j.electacta.2021.139490
    [19] Liu J, Xu Y G, Kong L B. Synthesis of polyvalent ion reaction of MoS2/CoS2-RGO anode materials for high-performance sodium-ion batteries and sodium-ion capacitors[J]. Journal of colloid and interface science,2020,575:42-53. doi: 10.1016/j.jcis.2020.04.074
    [20] Liu H, Moon K, Li J, et al. Laser-oxidized Fe3O4 nanoparticles anchored on 3D macroporous graphene flexible electrodes for ultrahigh-energy in-plane hybrid micro-supercapacitors[J]. Nano Energy,2020,77:105058. doi: 10.1016/j.nanoen.2020.105058
    [21] Peng Y, Zhao W, Ni F, et al. Forest-like laser-induced graphene film with ultrahigh solar energy utilization efficiency[J]. ACS Nano,2021,15(12):19490-19502. doi: 10.1021/acsnano.1c06277
    [22] Zhang Z, Song M, Hao J, et al. Visible light laser-induced graphene from phenolic resin: A new approach for directly writing graphene-based electrochemical devices on various substrates[J]. Carbon,2018,127:287-296. doi: 10.1016/j.carbon.2017.11.014
    [23] Singh S P, Li Y, Zhang J, et al. Sulfur-doped laser-induced porous graphene derived from polysulfone-class polymers and membranes[J]. ACS Nano,2018,12(1):289-297. doi: 10.1021/acsnano.7b06263
    [24] Nebel A, Herrmann T, Henrich B, et al. Fast micromachining using picosecond lasers[C]//Critical Review: Industrial Lasers and Applications. SPIE, 2005, 5706: 87-98 Doi: 10.1117/12.601651.
    [25] Liu J, Liu H, Lin N, et al. Facile fabrication of super-hydrophilic porous graphene with ultra-fast spreading feature and capillary effect by direct laser writing[J]. Materials Chemistry and Physics,2020,251:123083. doi: 10.1016/j.matchemphys.2020.123083
    [26] Biswas R K, Vijayaraghavan R K, McNally P, et al. Graphene growth kinetics for CO2 laser carbonization of polyimide[J]. Materials Letters,2022,307:131097. doi: 10.1016/j.matlet.2021.131097
    [27] Liu H, Xie Y, Liu J, et al. Laser-induced and KOH-activated 3D graphene: a flexible activated electrode fabricated via direct laser writing for in-plane micro-supercapacitors[J]. Chemical Engineering Journal,2020,393:124672. doi: 10.1016/j.cej.2020.124672
    [28] Xu R, Wang Z, Gao L, et al. Effective design of MnO2 nanoparticles embedded in laser-induced graphene as shape-controllable electrodes for flexible planar microsupercapacitors[J]. Applied Surface Science,2022,571:151385. doi: 10.1016/j.apsusc.2021.151385
    [29] Jiang S, Shi T, Liu D, et al. Integration of MnO2 thin film and carbon nanotubes to three-dimensional carbon microelectrodes for electrochemical microcapacitors[J]. Journal of Power Sources,2014,262:494-500. doi: 10.1016/j.jpowsour.2013.12.009
    [30] Ribeiro-Soares J, Oliveros M E, Garin C, et al. Structural analysis of polycrystalline graphene systems by Raman spectroscopy[J]. Carbon,2015,95:646-652. doi: 10.1016/j.carbon.2015.08.020
    [31] Lamberti A, Perrucci F, Caprioli M, et al. New insights on laser-induced graphene electrodes for flexible supercapacitors: tunable morphology and physical properties[J]. Nanotechnology,2017,28(17):174002. doi: 10.1088/1361-6528/aa6615
    [32] Zhu C, Dong X, Mei X, et al. Direct laser writing of MnO2 decorated graphene as flexible supercapacitor electrodes[J]. Journal of Materials Science,2020,55(36):17108-17119. doi: 10.1007/s10853-020-05212-2
    [33] Mahmood F, Zhang H, Lin J, et al. Laser-induced graphene derived from kraft lignin for flexible supercapacitors[J]. ACS Omega,2020,5(24):14611-14618. doi: 10.1021/acsomega.0c01293
    [34] Lu X, Luo X, Zhang J, et al. Lattice vibrations and Raman scattering in two-dimensional layered materials beyond graphene[J]. Nano Research,2016,9:3559-3597. doi: 10.1007/s12274-016-1224-5
    [35] Yuan M, Luo F, Rao Y, et al. SWCNT-bridged laser-induced graphene fibers decorated with MnO2 nanoparticles for high-performance flexible micro-supercapacitors[J]. Carbon,2021,183:128-137. doi: 10.1016/j.carbon.2021.07.014
    [36] Liu X, Cheng H, Zhao Y, et al. Portable electrochemical biosensor based on laser-induced graphene and MnO2 switch-bridged DNA signal amplification for sensitive detection of pesticide[J]. Biosensors and Bioelectronics,2022,199:113906. doi: 10.1016/j.bios.2021.113906
    [37] Ma J, Cui Z, Du Y, et al. Multifunctional Prussian blue/graphene ink for flexible biosensors and supercapacitors[J]. Electrochimica Acta,2021,387:138496. doi: 10.1016/j.electacta.2021.138496
    [38] Duignan T T, Zhao X S. Impurities limit the capacitance of carbon-based supercapacitors[J]. The Journal of Physical Chemistry C,2019,123(7):4085-4093. doi: 10.1021/acs.jpcc.8b12031
    [39] Parmeggiani M, Zaccagnini P, Stassi S, et al. PDMS/polyimide composite as an elastomeric substrate for multifunctional laser-induced graphene electrodes[J]. ACS Applied Materials & Interfaces,2019,11(36):33221-33230.
    [40] Ma W, Zhu J, Wang Z, et al. Recent advances in preparation and application of laser-induced graphene in energy storage devices[J]. Materials Today Energy,2020,18:100569. doi: 10.1016/j.mtener.2020.100569
    [41] Qu W, Zhao Z, Wang J, et al. Direct laser writing of pure lignin on carbon cloth for highly flexible supercapacitors with enhanced areal capacitance[J]. Sustainable Energy & Fuels,2021,5(14):3744-3754.
    [42] Khandelwal M, Van Tran C, In J B. Nitrogen and phosphorous Co-doped laser-induced graphene: A high-performance electrode material for supercapacitor applications[J]. Applied Surface Science,2022,576:151714. doi: 10.1016/j.apsusc.2021.151714
    [43] Li Y, Luong D X, Zhang J, et al. Laser‐induced graphene in controlled atmospheres: from superhydrophilic to superhydrophobic surfaces[J]. Advanced Materials,2017,29(27):1700496. doi: 10.1002/adma.201700496
    [44] Snook G A, Kao P, Best A S. Conducting-polymer-based supercapacitor devices and electrodes[J]. Journal of power sources,2011,196(1):1-12. doi: 10.1016/j.jpowsour.2010.06.084
    [45] Beidaghi M, Wang C. Micro-supercapacitors based on three dimensional interdigital polypyrrole/C-MEMS electrodes[J]. Electrochimica Acta,2011,56(25):9508-9514. doi: 10.1016/j.electacta.2011.08.054
    [46] Peng Z, Ye R, Mann J A, et al. Flexible boron-doped laser-induced graphene microsupercapacitors[J]. ACS Nano,2015,9(6):5868-5875. doi: 10.1021/acsnano.5b00436
  • 20230509supportting imformation.pdf
  • 加载中
图(9)
计量
  • 文章访问数:  311
  • HTML全文浏览量:  168
  • PDF下载量:  104
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-23
  • 录用日期:  2023-06-15
  • 修回日期:  2023-06-15
  • 网络出版日期:  2023-07-12
  • 刊出日期:  2023-10-01

目录

    /

    返回文章
    返回