留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Development of biochar electrode materials for capacitive deionization: preparation, performance, regeneration and other challenges

ZENG Zhi-hong YAN Li-li LI Guang-hui RAO Pin-hua SUN Yi-ran ZHAO Zhen-yi

曾志虹, 严丽丽, 李光辉, 饶品华, 孙怡然, 赵贞怡. 生物炭电极材料及其在电容去离子中的应用进展:制备、性能、再生和挑战. 新型炭材料(中英文), 2023, 38(5): 837-860. doi: 10.1016/S1872-5805(23)60779-6
引用本文: 曾志虹, 严丽丽, 李光辉, 饶品华, 孙怡然, 赵贞怡. 生物炭电极材料及其在电容去离子中的应用进展:制备、性能、再生和挑战. 新型炭材料(中英文), 2023, 38(5): 837-860. doi: 10.1016/S1872-5805(23)60779-6
ZENG Zhi-hong, YAN Li-li, LI Guang-hui, RAO Pin-hua, SUN Yi-ran, ZHAO Zhen-yi. Development of biochar electrode materials for capacitive deionization: preparation, performance, regeneration and other challenges. New Carbon Mater., 2023, 38(5): 837-860. doi: 10.1016/S1872-5805(23)60779-6
Citation: ZENG Zhi-hong, YAN Li-li, LI Guang-hui, RAO Pin-hua, SUN Yi-ran, ZHAO Zhen-yi. Development of biochar electrode materials for capacitive deionization: preparation, performance, regeneration and other challenges. New Carbon Mater., 2023, 38(5): 837-860. doi: 10.1016/S1872-5805(23)60779-6

生物炭电极材料及其在电容去离子中的应用进展:制备、性能、再生和挑战

doi: 10.1016/S1872-5805(23)60779-6
基金项目: 地方院校能力建设项目资助(21010501400);上海市“科技创新行动计划”启明星项目(扬帆专项)(23YF1415400)
详细信息
    通讯作者:

    严丽丽,副教授,E-mail:liliyan@sues.edu.cn

  • 中图分类号: 127.1+1

Development of biochar electrode materials for capacitive deionization: preparation, performance, regeneration and other challenges

Funds: This work was supported by Capacity Building Project of Some Local Colleges and Universities in Shanghai (21010501400) and Shanghai Sailing Program (23YF1415400)
More Information
  • 摘要: 电容去离子技术(CDI)是一种潜在的经济高效的海水淡化技术,其电吸附能力取决于电极材料的结构和性能。生物质材料因具有资源丰富、成本低和结构独特等优点,成为CDI电极材料领域的研究热点。然而对生物炭电极的制备、脱盐性能、及再生现状仍然有待总结和阐明。本文梳理并对比了近几年来国内外生物炭电极的制备及其在电容去离子中的应用,重点阐述了生物炭材料、CDI运行参数等对脱盐性能的影响,发现生物炭电极的脱盐量与材料的介孔占比成正相关。进一步阐明了离子的选择性吸附主要依赖于离子半径、电荷等离子特性以及工作电压、充电时间和进水水质等实验参数。最后,对该类材料电极再生的现状进行探讨并对未来发展作出了展望。
  • FIG. 2649.  FIG. 2649.

    FIG. 2649..  FIG. 2649.

    Figure  1.  Architecture diagrams and removal mechanisms of (a) capacitive deionization (CDI), (b) membrane capacitive deionization (MCDI), (c) flow electrode capacitive deionization (FCDI), and (d) hybrid capacitive deionization (HCDI)[21]. (Reprinted with permission)

    Figure  2.  Illustration of the synthetic procedure using pyrolysis method of (a) cattle bone porous carbon[53], (b) wood-derived biochar[55]. (Reprinted with permission)

    Figure  3.  Illustration of the synthetic procedure using hydrothermal carbonization of (a) bamboo-based porous carbon[63], (b) penicillin fermentation residue derived porous biochar[65]. (Reprinted with permission)

    Figure  4.  Illustration of the synthetic procedure using template method of (a) nitrogen-doped polyporphyrin porous carbon[67], (b) Cl-rich porous carbon[69], (c) preparation of the biomass-based hierarchical porous carbon by microwave synergistic[73]. (Reprinted with permission)

    Figure  5.  Relationship between (a) SAC and the proportion of mesopore, (b) the specific surface area of biochar and total volume of pores, (c) SAC and the regeneration performance and specific surface area, (d) SAC and the regeneration performance and specific capacitance, (e) biochar-based electrode and CDI performance

    Figure  6.  (a) The removal effect of biochar electrode made via 2 methods on cadmium[94], (b) the curves of power density and electrode potentials polarization[96], (c) the potential and current of the MCDI during a 40 cycles desalination operation[104]. (Reprinted with permission)

    Figure  7.  Influence of the following operating parameters in the CDI system: (a) electrosorption capacity at different applied voltages[71], (b) effect of electrode spacing[54], (c) conductivity with different flow rate[115], (d) SAC at equilibrium state with different initial concentrations[31]. (Reprinted with permission)

    Figure  8.  Effects of (a) competitive ions on the adsorption of Cu2+ and adsorption mechanism diagram under 0.8 V[119], (b) the chemical bond on the electrosorption and desorption of anions in CDI and adsorption mechanism diagram[120]. (Reprinted with permission)

    Figure  9.  (a) Relationship diagram to achieve long-term stability, (b) desalination and stability performance of NAC30//AC and AC//AC at 1.2 V[131], (c) Long-term anode stability in CDI using asymmetric electrode mass ratios[135]. (Reprinted with permission)

    Figure  10.  Statistics of research articles on the use of biomass, carbon nanofibers, carbon aerogels, carbon nanotubes, graphene, and activated carbon, for preparing electrodes for the application of CDI, published in the last 10 years (data obtained from Web of Science)

    Table  1.   Properties of biochar electrodes prepared from different biomass

    Carbon sourceActivation
    method
    Volume of
    mesopores
    (cm3 g−1)
    A total
    volume
    of pores
    (cm3 g−1)
    Vmeso/Vtotal
    ratio (%)
    Specific
    surface area
    (m2 g−1)
    Specific
    capacitance
    (F g−1)
    Salt adsorption
    capacity
    (mg g−1)
    Regeneration
    performance
    Ref.
    Rice huskKOH0.701.2157.8518391218.1110[41]
    Cattle boneKHCO31.261.7372.832147-19.35-[53]
    Sugarcane biowaste KOH―CO20.441.0342.7218145021.0070 (87%)[44]
    KOH―CO20.360.6456.25101920828.903[71]
    KelpKOH-1.4-261419027.204
    (100%)
    [79]
    AuriculariaKOH0.190.9020.621401737.74-[80]
    Loofa spongeKOH0.110.9511.5818199322.50 4 (97%)[81]
    Enteromorpha proliferaKOH2.333.8660.003283361--[82]
    Soybean rootKOH0.130.9413.832143276--[83]
    Soybean shellsKHCO3-0.37-84421543.305[70]
    Watermelon peelsKHCO3-1.31-236022417.3810[84]
    CitrusesZnCl20.060.2031.4732312010.7935 (80%)[85]
    Pomelo peelsNH4H2P4―KHCO3-1.73-272620720.7810[86]
    Date seedsKOH---98140022.506 (<5%)[51]
    CottonNH30.711.5446.10268011016.1010[87]
    Shrimp shellsKOH0.961.9349.383171---[88]
    Coconut shellsKOH―KMnO40.100.1853.0730441033.905[49]
    Peanut shellsZnCl2―CO20.851.2170.25 2015301--[89]
    Litchi shellsKOH―KMnO4---1486206--[90]
    Crab shells +
    Rice husks
    KOH0.982.0248.513557474--[91]
    Red oakFe2O3―KOH---3042011.132.5 (98%)[54]
    BambooKOH―Citric acid0.311.383132436--[64]
    BarleyCopper citrate0.651.1656.032140402--[92]
    下载: 导出CSV
  • [1] Oladunni J, Zain J H, Hai A, et al. A comprehensive review on recently developed carbon based nanocomposites for capacitive deionization: From theory to practice[J]. Separation and Purification Technology,2018,207:291-320. doi: 10.1016/j.seppur.2018.06.046
    [2] Liu Y, Wang X P, Zong Z A, et al. Thin film nanocomposite membrane incorporated with 2D-MOF nanosheets for highly efficient reverse osmosis desalination[J]. Journal of Membrane Science,2022,653:120520. doi: 10.1016/j.memsci.2022.120520
    [3] Zhao D L, Zhao Q P, Chung T S. Fabrication of defect-free thin-film nanocomposite (TFN) membranes for reverse osmosis desalination[J]. Desalination,2021,516:115230. doi: 10.1016/j.desal.2021.115230
    [4] Al-Amshawee S, Yunus M Y B M, Azoddein A A M, et al. Electrodialysis desalination for water and wastewater: A review[J]. Chemical Engineering Journal,2020,380:122231. doi: 10.1016/j.cej.2019.122231
    [5] Khan M I, Mondal A N, Tong B, et al. Development of BPPO-based anion exchange membranes for electrodialysis desalination applications[J]. Desalination,2016,391:61-68. doi: 10.1016/j.desal.2015.11.024
    [6] Alsehli M, Choi J K, Aljuhan M. A novel design for a solar powered multistage flash desalination[J]. Solar Energy,2017,153:348-359. doi: 10.1016/j.solener.2017.05.082
    [7] Thabit M S, Hawari A H, Ammar M H, et al. Evaluation of forward osmosis as a pretreatment process for multi stage flash seawater desalination[J]. Desalination,2019,461:22-29. doi: 10.1016/j.desal.2019.03.015
    [8] Aly S, Manzoor H, Simson S, et al. Pilot testing of a novel multi effect distillation (MED) technology for seawater desalination[J]. Desalination,2021,519:115221. doi: 10.1016/j.desal.2021.115221
    [9] Prajapati M, Shah M, Soni B. A comprehensive review of the geothermal integrated multi-effect distillation (MED) desalination and its advancements[J]. Groundwater for Sustainable Development,2022,19:100808. doi: 10.1016/j.gsd.2022.100808
    [10] Shalaby S M, Sharshir S W, Kabeel A E, et al. Reverse osmosis desalination systems powered by solar energy: Preheating techniques and brine disposal challenges-A detailed review[J]. Energy Conversion and Management,2022,251:114971. doi: 10.1016/j.enconman.2021.114971
    [11] Aydin M I, Selcuk H. Development of a UV-based photocatalytic electrodialysis reactor for ion separation and humic acid removal[J]. International Journal of Environmental Science and Technology,2023,20:5913-5924. doi: 10.1007/s13762-022-04358-7
    [12] Lin S, Zhao H, Zhu L, et al. Seawater desalination technology and engineering in China: A review[J]. Desalination,2021,498:114728. doi: 10.1016/j.desal.2020.114728
    [13] Zhao C, Wang Q, Chang S, et al. Efficient transport system of cultivated mushroom mycelium enables its derived carbon with high performance electrochemical desalination capability[J]. Carbon,2022,196:699-707. doi: 10.1016/j.carbon.2022.05.020
    [14] Wang T, Liang H, Bai L, et al. Adsorption behavior of powdered activated carbon to control capacitive deionization fouling of organic matter[J]. Chemical Engineering Journal,2020,384:123277. doi: 10.1016/j.cej.2019.123277
    [15] Wu Q, Liang D, Lu S, et al. Advances and perspectives in integrated membrane capacitive deionization for water desalination[J]. Desalination,2022,542:116043. doi: 10.1016/j.desal.2022.116043
    [16] Dong Q, Guo X, Huang X, et al. Selective removal of lead ions through capacitive deionization: Role of ion-exchange membrane[J]. Chemical Engineering Journal,2019,361:1535-1542. doi: 10.1016/j.cej.2018.10.208
    [17] Wu Q, Liang D, Lu S, et al. Novel inorganic integrated membrane electrodes for membrane capacitive deionization[J]. ACS Applied Materials & Interfaces,2021,1339:46537-46548.
    [18] Wu Q, Liang D, Avraham E, et al. Enhanced capacitive deionization of an integrated membrane electrode by thin layer spray-coating of ion exchange polymers on activated carbon electrode[J]. Desalination,2020,491:114460. doi: 10.1016/j.desal.2020.114460
    [19] Shin Y U, Lim J, Boo C, et al. Improving the feasibility and applicability of flow-electrode capacitive deionization (FCDI): Review of process optimization and energy efficiency[J]. Desalination,2021,502:114930. doi: 10.1016/j.desal.2021.114930
    [20] Zhang C, Wang M, Xiao W, et al. Phosphate selective recovery by magnetic iron oxide impregnated carbon flow-electrode capacitive deionization (FCDI)[J]. Water Research,2021,189:116653. doi: 10.1016/j.watres.2020.116653
    [21] Bao S, Xin C, Zhang Y, et al. Application of capacitive deionization in water treatment and energy recovery: A Review[J]. Energies,2023,16(3):1136. doi: 10.3390/en16031136
    [22] Wang J, Shi Z, Fang J, et al. The optimized flow-electrode capacitive deionization (FCDI) performance by ZIF-8 derived nanoporous carbon polyhedron[J]. Separation and Purification Technology,2022,281:119345. doi: 10.1016/j.seppur.2021.119345
    [23] Phuoc N M, Tran N A T, Khoi T M, et al. ZIF-67 metal-organic frameworks and CNTs-derived nanoporous carbon structures as novel electrodes for flow-electrode capacitive deionization[J]. Separation and Purification Technology,2021,277:119466. doi: 10.1016/j.seppur.2021.119466
    [24] Chang J, Duan F, Cao H, et al. Superiority of a novel flow-electrode capacitive deionization (FCDI) based on a battery material at high applied voltage[J]. Desalination,2019,468:114080. doi: 10.1016/j.desal.2019.114080
    [25] Jin J, Li M, Tang M, et al. Phase- and crystallinity-tailorable MnO2 as an electrode for highly efficient hybrid capacitive deionization (HCDI)[J]. ACS Sustainable Chemistry & Engineering,2020,8(30):11424-11434.
    [26] Vengatesan M R, Fahmi Darawsheh I F, et al. Ag-Cu bimetallic nanoparticle decorated graphene nanocomposite as an effective anode material for hybrid capacitive deionization (HCDI) system[J]. Electrochimica Acta,2019,297:1052-1062. doi: 10.1016/j.electacta.2018.12.004
    [27] Li Y, Ding Z, Li J, et al. Highly efficient and stable desalination via novel hybrid capacitive deionization with redox-active polyimide cathode[J]. Desalination,2019,469:114098. doi: 10.1016/j.desal.2019.114098
    [28] Chen Z, Xu X, Liu Y, et al. Ultra-durable and highly-efficient hybrid capacitive deionization by MXene confined MoS2 heterostructure[J]. Desalination,2022,528:115616. doi: 10.1016/j.desal.2022.115616
    [29] Wang K, Liu Y, Ding Z, et al. Chloride pre-intercalated CoFe-layered double hydroxide as chloride ion capturing electrode for capacitive deionization[J]. Chemical Engineering Journal,2022,433:133578. doi: 10.1016/j.cej.2021.133578
    [30] Huang Z H, Yang Z Y, Kang F Y, et al. Carbon electrodes for capacitive deionization[J]. Journal of Materials Chemistry A,2017,5(2):470-496. doi: 10.1039/C6TA06733F
    [31] Kim J, Kim J, Kim J H, et al. Hierarchically open-porous nitrogen-incorporated carbon polyhedrons derived from metal-organic frameworks for improved CDI performance[J]. Chemical Engineering Journal,2020,382:122996. doi: 10.1016/j.cej.2019.122996
    [32] Gao W, Lin Z, Chen H, et al. A review on N-doped biochar for enhanced water treatment and emerging applications[J]. Fuel Processing Technology,2022,237:107468. doi: 10.1016/j.fuproc.2022.107468
    [33] Kamarudin N S, Dahalan F A, Hasan M A, et al. Review of its history, characteristics, factors that influence its yield, methods of production, application in wastewater treatment and recent development[J]. Biointerface Research in Applied Chemistry,2021,126:7914-7926.
    [34] Atkinson C J, Fitzgerald J D, Hipps N A. Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review[J]. Plant and Soil,2010,337:1-18. doi: 10.1007/s11104-010-0464-5
    [35] Truong Q M, Nguyen T B, Chen W H, et al. Removal of heavy metals from aqueous solutions by high performance capacitive deionization process using biochar derived from Sargassum hemiphyllum[J]. Bioresource Technology,2023,370:128524. doi: 10.1016/j.biortech.2022.128524
    [36] Amalina F, Krishnan S, Zularisam A W, et al. Recent advancement and applications of biochar technology as a multifunctional component towards sustainable environment[J]. Environmental Development,2023,46:100819. doi: 10.1016/j.envdev.2023.100819
    [37] Antonangelo J A, Sun X, Zhang H. The roles of co-composted biochar (COMBI) in improving soil quality, crop productivity, and toxic metal amelioration[J]. Journal of Environmental Management,2021,277:111443. doi: 10.1016/j.jenvman.2020.111443
    [38] Vijayaraghavan K, Balasubramanian R. Application of pinewood waste-derived biochar for the removal of nitrate and phosphate from single and binary solutions[J]. Chemosphere,2021,278:130361. doi: 10.1016/j.chemosphere.2021.130361
    [39] Yang X, Wang W, Chen X, et al. Effects of N-enriched biochar on ecosystem greenhouse gas emissions, rice yield, and bacterial community diversity in subtropical rice paddy soils[J]. European Journal of Soil Biology,2022,113:103440. doi: 10.1016/j.ejsobi.2022.103440
    [40] Liu A, Liu T F, Yuan H D, et al. A review of biomass-derived carbon materials for lithium metal anodes[J]. New Carbon Materials,2022,37(4):658-672. doi: 10.1016/S1872-5805(22)60620-6
    [41] Cuong D V, Wu P C, Liu N L, et al. Hierarchical porous carbon derived from activated biochar as an eco-friendly electrode for the electrosorption of inorganic ions[J]. Separation and Purification Technology,2020,242:116813. doi: 10.1016/j.seppur.2020.116813
    [42] Song Z, Li L, Chen Y, et al. Efficient removal and recovery of Cd2+ from aqueous solutions by capacitive deionization (CDI) method using biochars[J]. Journal of Materials Science & Technology,2023,148:10-18.
    [43] Ni Y, Zhang J, You D. Design of a paulownia-biochar/MoS2 composite electrode material for efficient electrosorption removal of Cr(Ⅵ) from wastewater[J]. New Journal of Chemistry,2022,46(47):22755-22765. doi: 10.1039/D2NJ04310F
    [44] Lado J J, Zornitta R L, Vázquez Rodríguez I, et al. Sugarcane biowaste-derived biochars as capacitive deionization electrodes for brackish water desalination and water-softening applications[J]. ACS Sustainable Chemistry & Engineering,2019,7(23):18992-19004.
    [45] Maheshwari K, Agarwal M, Gupta A B. Efficient desalination system for brackish water incorporating biomass-derived porous material[J]. Journal of the Taiwan Institute of Chemical Engineers,2022,134:104316. doi: 10.1016/j.jtice.2022.104316
    [46] Stephanie H, Mlsna T E and Wipf D O. Functionalized biochar electrodes for asymmetrical capacitive deionization[J]. Desalination,2021,516:115240. doi: 10.1016/j.desal.2021.115240
    [47] Maniscalco M P, Corrado C, Volpe R, et al. Evaluation of the optimal activation parameters for almond shell bio-char production for capacitive deionization[J]. Bioresource Technology Reports,2020,11:100435. doi: 10.1016/j.biteb.2020.100435
    [48] Deng D, Luhasile M K, Li H, et al. A novel layered activated carbon with rapid ion transport through chemical activation of chestnut inner shell for capacitive deionization[J]. Desalination,2022,531:115685. doi: 10.1016/j.desal.2022.115685
    [49] Adorna J, Borines M, Dang V D, et al. Coconut shell derived activated biochar–manganese dioxide nanocomposites for high performance capacitive deionization[J]. Desalination,2020,492:114602. doi: 10.1016/j.desal.2020.114602
    [50] Qiao Y, Zhang C, Kong F, et al. Activated biochar derived from peanut shells as the electrode materials with excellent performance in Zinc-air battery and supercapacitance[J]. Waste Management,2021,125:257-267. doi: 10.1016/j.wasman.2021.02.057
    [51] Hai A, Bharath G, Babu K R, et al. Date seeds biomass-derived activated carbon for efficient removal of NaCl from saline solution[J]. Process Safety and Environmental Protection,2019,129:103-111. doi: 10.1016/j.psep.2019.06.024
    [52] Elisadiki J, Kibona T E, Machunda R L, et al. Biomass-based carbon electrode materials for capacitive deionization: a review[J]. Biomass Conversion and Biorefinery,2020,10(4):1327-1356. doi: 10.1007/s13399-019-00463-9
    [53] Wang H, Wei D, Gang H, et al. Hierarchical porous carbon from the synergistic “Pore-on-Pore” strategy for efficient capacitive deionization[J]. ACS Sustainable Chemistry & Engineering,2020,8(2):1129-1136.
    [54] Du Z, Tian W, Qiao K, et al. Improved chlorine and chromium ion removal from leather processing wastewater by biocharcoal-based capacitive deionization[J]. Separation and Purification Technology,2020,233:116024. doi: 10.1016/j.seppur.2019.116024
    [55] Yan B, Zheng J, Feng L, et al. Wood-derived biochar as thick electrodes for high-rate performance supercapacitors[J]. Biochar,2022,4(1):1-19. doi: 10.1007/s42773-021-00127-w
    [56] Jin Z, Wang B, Ma L, et al. Air pre-oxidation induced high yield N-doped porous biochar for improving toluene adsorption[J]. Chemical Engineering Journal,2020,385:123843. doi: 10.1016/j.cej.2019.123843
    [57] Li B, Li K. Effect of nitric acid pre-oxidation concentration on pore structure and nitrogen/oxygen active decoration sites of ethylenediamine -modified biochar for mercury(II) adsorption and the possible mechanism[J]. Chemosphere,2019,220:28-39. doi: 10.1016/j.chemosphere.2018.12.099
    [58] Chu M, Tian W, Zhao J, et al. A comprehensive review of capacitive deionization technology with biochar-based electrodes: Biochar-based electrode preparation, deionization mechanism and applications[J]. Chemosphere,2022,307:136024. doi: 10.1016/j.chemosphere.2022.136024
    [59] Lin G, Ma R, Zhou Y, et al. KOH activation of biomass-derived nitrogen-doped carbons for supercapacitor and electrocatalytic oxygen reduction[J]. Electrochimica Acta,2018,261:49-57. doi: 10.1016/j.electacta.2017.12.107
    [60] Shi J, Tian X D, Li X, et al. Micro/mesopore carbon spheres derived from sucrose for use in high performance supercapacitors[J]. New Carbon Materials,2021,36(6):1149-1155. doi: 10.1016/S1872-5805(21)60044-6
    [61] Hossain N, Nizamuddin S, Griffin G, et al. Synthesis and characterization of rice husk biochar via hydrothermal carbonization for wastewater treatment and biofuel production[J]. Scientific reports,2020,10:18851. doi: 10.1038/s41598-020-75936-3
    [62] Gong Y, Xie L, Chen C, et al. Bottom-up hydrothermal carbonization for the precise engineering of carbon materials[J]. Progress in Materials Science,2023,132:101048. doi: 10.1016/j.pmatsci.2022.101048
    [63] Chen F, Zhang Y, Zheng M, et al. Preparation of high-performance porous carbon materials by citric acid-assisted hydrothermal carbonization of bamboo and their application in electrode materials[J]. Energy & Fuels,2022,36(16):9303-9312.
    [64] Lei W, Yang B, Sun Y, et al. Self-sacrificial template synthesis of heteroatom doped porous biochar for enhanced electrochemical energy storage[J]. Journal of Power Sources,2021,488:229455. doi: 10.1016/j.jpowsour.2021.229455
    [65] Hu J, Hong C, Zhao C, et al. Nitrogen self-doped hierarchical porous carbon via penicillin fermentation residue (PR) hydrothermal carbonization (HTC) and activation for supercapacitance[J]. Journal of Alloys and Compounds,2022,918:165452. doi: 10.1016/j.jallcom.2022.165452
    [66] Xie Y, Kocaefe D, Chen C, et al. Review of research on template methods in preparation of nanomaterials[J]. Journal of Nanomaterials, 2016, 1-10.
    [67] Zhang W, Jin C, Shi Z, et al. Biobased polyporphyrin derived porous carbon electrodes for highly efficient capacitive deionization[J]. Chemosphere,2022,291:133113. doi: 10.1016/j.chemosphere.2021.133113
    [68] Wang S, Chen D, Zhang Z X, et al. Mesopore dominated capacitive deionization of N-doped hierarchically porous carbon for water purification[J]. Separation and Purification Technology,2022,290:120912. doi: 10.1016/j.seppur.2022.120912
    [69] Shi Q, Zhang X, Shen B, et al. Enhanced elemental mercury removal via chlorine-based hierarchically porous biochar with CaCO3 as template[J]. Chemical Engineering Journal,2021,406:126828. doi: 10.1016/j.cej.2020.126828
    [70] Zhao C, Liu G, Sun N, et al. Biomass-derived N-doped porous carbon as electrode materials for Zn-air battery powered capacitive deionization[J]. Chemical Engineering Journal,2018,334:1270-1280. doi: 10.1016/j.cej.2017.11.069
    [71] Tang Y H, Liu S H, Tsang D C W. Microwave-assisted production of CO2-activated biochar from sugarcane bagasse for electrochemical desalination[J]. Journal of Hazardous Materials,2020,383:121192. doi: 10.1016/j.jhazmat.2019.121192
    [72] Huang H, Chen Y, Ma R, et al. Preparation of high performance porous carbon by microwave synergistic nitrogen/phosphorus doping for efficient removal of Cu2+ via capacitive deionization[J]. Environmental Research,2023,222:115342. doi: 10.1016/j.envres.2023.115342
    [73] Wu Y, Li C, An J, et al. Ultrasonic-assisted fungi modification of lignocellulose-derived hierarchical porous carbon for efficient desalination[J]. Desalination,2022,541:116035. doi: 10.1016/j.desal.2022.116035
    [74] Genovese M, Jiang J, Lian K, et al. High capacitive performance of exfoliated biochar nanosheets from biomass waste corn cob[J]. Journal of Materials Chemistry A,2015,3(6):2903-2913. doi: 10.1039/C4TA06110A
    [75] Zhang N, Liang J L, Li H, et al. Research on the development of electrode preparation from biomass derived carbon[J]. New Chemical Materials,2022,50(01):66-70.
    [76] Ying T Y, Yang K L, Yiacoumi S, et al. Electrosorption of ions from aqueous solutions by nanostructured carbon aerogel[J]. Journal of colloid and interface science,2002,250(1):18-27. doi: 10.1006/jcis.2002.8314
    [77] Liu D, Zhang W, Lin H, et al. Hierarchical porous carbon based on the self-templating structure of rice husk for high-performance supercapacitors[J]. RSC advances,2015,5(25):19294-19300. doi: 10.1039/C4RA15111A
    [78] Huang J, Chen L, Dong H, et al. Hierarchical porous carbon with network morphology derived from natural leaf for superior aqueous symmetrical supercapacitors[J]. Electrochimica Acta,2017,258:504-511. doi: 10.1016/j.electacta.2017.11.092
    [79] Sun N, Li Z, Zhang X, et al. Hierarchical porous carbon materials derived from kelp for superior capacitive applications[J]. ACS Sustainable Chemistry & Engineering,2019,7(9):8735-8743.
    [80] Feng J, Yang Z, Hou S, et al. GO/auricularia-derived hierarchical porous carbon used for capacitive deionization with high performance[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2018,547:134-140.
    [81] Feng C, Chen Y A, Yu C P, et al. Highly porous activated carbon with multi-channeled structure derived from loofa sponge as a capacitive electrode material for the deionization of brackish water[J]. Chemosphere,2018,208:285-293. doi: 10.1016/j.chemosphere.2018.05.174
    [82] Li S J, Zhang M Y, Gao Y, et al. Preparation of a porous carbon from Enteromorpha prolifera with excellent electrochemical properties[J]. New Carbon Materials,2021,36(6):1158-1166. doi: 10.1016/S1872-5805(21)60068-9
    [83] Guo N, Li M, Wang Y, et al. Soybean root-derived hierarchical porous carbon as electrode material for high-performance supercapacitors in ionic liquids[J]. ACS applied materials & interfaces,2016,8(49):33626-33634.
    [84] Zhao S, Yan T, Wang Z, et al. Removal of NaCl from saltwater solutions using micro/mesoporous carbon sheets derived from watermelon peel via deionization capacitors[J]. RSC Advances,2017,7(8):4297-4305. doi: 10.1039/C6RA27127H
    [85] Xie Z, Shang X, Yan J, et al. Biomass-derived porous carbon anode for high-performance capacitive deionization[J]. Electrochimica Acta,2018,290:666-675. doi: 10.1016/j.electacta.2018.09.104
    [86] Xu D, Tong Y, Yan T, et al. N, P-codoped meso-/microporous carbon derived from biomass materials via a dual-activation strategy as high-performance electrodes for deionization capacitors[J]. ACS Sustainable Chemistry & Engineering,2017,5(7):5810-5819.
    [87] Li G X, Hou P X, Zhao S Y, et al. A flexible cotton-derived carbon sponge for high-performance capacitive deionization[J]. Carbon,2016,101:1-8. doi: 10.1016/j.carbon.2015.12.095
    [88] Qin L, Zhou Z, Dai J, et al. Novel N-doped hierarchically porous carbons derived from sustainable shrimp shell for high-performance removal of sulfamethazine and chloramphenicol[J]. Journal of the Taiwan Institute of Chemical Engineers,2016,62:228-238. doi: 10.1016/j.jtice.2016.02.009
    [89] Jiang X, Guo F, Jia X, et al. Synthesis of nitrogen-doped hierarchical porous carbons from peanut shell as a promising electrode material for high-performance supercapacitors[J]. Journal of Energy Storage,2020,30:101451. doi: 10.1016/j.est.2020.101451
    [90] Zhao N, Deng L, Luo D, et al. One-step fabrication of biomass-derived hierarchically porous carbon/MnO nanosheets composites for symmetric hybrid supercapacitor[J]. Applied Surface Science,2020,526:146696. doi: 10.1016/j.apsusc.2020.146696
    [91] Peng L, Liang Y, Huang J, et al. Mixed-biomass wastes derived hierarchically porous carbons for high-performance electrochemical energy storage[J]. ACS Sustainable Chemistry & Engineering,2019,712:10393-10402.
    [92] Wan L, Xiao R, Liu J, et al. A novel strategy to prepare N, S-codoped porous carbons derived from barley with high surface area for supercapacitors[J]. Applied Surface Science,2020,518:146265. doi: 10.1016/j.apsusc.2020.146265
    [93] Liu Q, Li X, Tan G, et al. Chemical bonding of flexible graphene to carbon paper: A new synthetic paradigm for freestanding electrode with high capacitive deionization performance[J]. Desalination,2022,538:115890. doi: 10.1016/j.desal.2022.115890
    [94] Wang Z, Tan Z, Li H, et al. Direct current electrochemical method for removal and recovery of heavy metals from water using straw biochar electrode[J]. Journal of Cleaner Production,2022,339:130746. doi: 10.1016/j.jclepro.2022.130746
    [95] Tran H Y, Greco G, Täubert C, et al. Influence of electrode preparation on the electrochemical performance of LiNi0.8Co0.15Al005O2 composite electrodes for lithium-ion batteries[J]. Journal of Power Sources,2012,210:276-285. doi: 10.1016/j.jpowsour.2012.03.017
    [96] Chang H C, Gustave W, Yuan Z F, et al. One-step fabrication of binder-free air cathode for microbial fuel cells by using balsa wood biochar[J]. Environmental Technology & Innovation,2020,18:100615.
    [97] Xi W, Zhang Y, Wang R, et al. The effect of electrode thickness and electrode/electrolyte interface on the capacitive deionization behavior of the Ti3C2Tx MXene electrodes[J]. Journal of Alloys and Compounds,2023,947:169701. doi: 10.1016/j.jallcom.2023.169701
    [98] Porada S, Bryjak M, van der Wal A, et al. Effect of electrode thickness variation on operation of capacitive deionization[J]. Electrochimica Acta,2012,75:148-156. doi: 10.1016/j.electacta.2012.04.083
    [99] Lang L, Hu X M, Zhao Y, et al. Corncob waste activated with different pore formers for capacitive deionization (CDI) materials[J]. Desalination and Water Treatment,2019,155:55-63. doi: 10.5004/dwt.2019.24000
    [100] Hao S, Xing Y, Zhao G, et al. Non-conductive ion extraction molds biomass into dual cross-linked structures with defect as both commercial conductor and electrode active material[J]. Journal of Energy Storage,2022,52:105043. doi: 10.1016/j.est.2022.105043
    [101] Kane S, Storer A, Xu W, et al. Biochar as a renewable substitute for carbon black in lithium-ion battery electrodes[J]. ACS Sustainable Chemistry & Engineering,2022,10(37):12226-12233.
    [102] Kiminaitė I, Lisauskas A, Striūgas N, et al. Fabrication and characterization of environmentally friendly biochar anode[J]. Energies,2022,15(1):112.
    [103] Mian M M, Kamana I M L, An X, et al. Cellulose nanofibers as effective binders for activated biochar-derived high-performance supercapacitors[J]. Carbohydrate Polymers,2023,301:120353. doi: 10.1016/j.carbpol.2022.120353
    [104] Chen J, Zuo K, Li B, et al. Fungal hypha-derived freestanding porous carbon pad as a high-capacity electrode for water desalination in membrane capacitive deionization[J]. Chemical Engineering Journal,2022,433:133781. doi: 10.1016/j.cej.2021.133781
    [105] Yang L, Takkallapally C, Gabhi R S, et al. Wood biochar monolith-based approach to increasing the volumetric energy density of supercapacitor[J]. Industrial & Engineering Chemistry Research,2022,61(23):7891-7901.
    [106] Husain Z, Shakeelur Raheman A R, Ansari K B, et al. Nano-sized mesoporous biochar derived from biomass pyrolysis as electrochemical energy storage supercapacitor[J]. Materials Science for Energy Technologies,2022,5:99-109. doi: 10.1016/j.mset.2021.12.003
    [107] Kong W, Ge X, Zhang M, et al. Nitrogen-doped hierarchical porous carbon obtained from silk cocoon for capacitive deionization[J]. Diamond and Related Materials,2022,129:109388. doi: 10.1016/j.diamond.2022.109388
    [108] Dehkhoda A M, Gyenge E, Ellis N. A novel method to tailor the porous structure of KOH-activated biochar and its application in capacitive deionization and energy storage[J]. Biomass and Bioenergy,2016,87:107-121. doi: 10.1016/j.biombioe.2016.02.023
    [109] Qian M, Xuan X Y, Pan L K, et al. Porous carbon electrodes from activated wasted coffee grounds for capacitive deionization[J]. Ionics,2019,25(7):3443-3452. doi: 10.1007/s11581-019-02887-9
    [110] Cen B, Yang R, Li K, et al. Covalently-bonded quaternized activated carbon for selective removal of NO3 in capacitive deionization[J]. Chemical Engineering Journal,2021,425:130573. doi: 10.1016/j.cej.2021.130573
    [111] Zhao S, Yan T, Wang H, et al. High capacity and high rate capability of nitrogen-doped porous hollow carbon spheres for capacitive deionization[J]. Applied Surface Science,2016,369:460-469. doi: 10.1016/j.apsusc.2016.02.085
    [112] Zhang L, Cao Z, Chen P, et al. Electrosorptive deionization with activated carbon electrodes based on bamboo chars[J]. Journal of Functional Materials,2008,10(39):1727-1730. doi: 10.3321/j.issn:1001-9731.2008.10.040
    [113] Zhang L, Guo S L, Cao Z, et al. Study on the deionization of activated carbon capacitor based on bamboo carbon[J]. Journal of Sichuan Normal University (Natural Science),2010,33(06):825-828.
    [114] Huang G H, Chen T C, Hsu S F, et al. Capacitive deionization (CDI) for removal of phosphate from aqueous solution[J]. Desalination and Water Treatment,2014,52:759-765. doi: 10.1080/19443994.2013.826331
    [115] Pastushok O, Zhao F, Ramasamy D L, et al. Nitrate removal and recovery by capacitive deionization (CDI)[J]. Chemical Engineering Journal,2019,375:121943. doi: 10.1016/j.cej.2019.121943
    [116] Mi M, Liu X, Kong W, et al. Hierarchical composite of N-doped carbon sphere and holey graphene hydrogel for high-performance capacitive deionization[J]. Desalination,2019,464:18-24. doi: 10.1016/j.desal.2019.04.014
    [117] Zhang H, Liang P, Bian Y, et al. Moderately oxidized graphene–carbon nanotubes hybrid for high performance capacitive deionization[J]. RSC Advances,2016,6(64):58907-58915. doi: 10.1039/C6RA10088K
    [118] Gamaethiralalage J G, Singh K, Sahin S, et al. Recent advances in ion selectivity with capacitive deionization[J]. Energy & Environmental Science,2021,14(3):1095-1120.
    [119] Hao Z, Cai Y, Wang Y, et al. A coupling technology of capacitive deionization and MoS2/nitrogen-doped carbon spheres with abundant active sites for efficiently and selectively adsorbing low-concentration copper ions[J]. Journal of Colloid and Interface Science,2020,564:428-441. doi: 10.1016/j.jcis.2019.12.063
    [120] Sun Z, Li Q, Chai L, et al. Effect of the chemical bond on the electrosorption and desorption of anions during capacitive deionization[J]. Chemosphere,2019,229:341-348. doi: 10.1016/j.chemosphere.2019.04.157
    [121] Ji Q, Hu C, Liu H, et al. Development of nitrogen-doped carbon for selective metal ion capture[J]. Chemical Engineering Journal,2018,350:608-615. doi: 10.1016/j.cej.2018.06.018
    [122] Kim Y J, Choi J H. Enhanced desalination efficiency in capacitive deionization with an ion-selective membrane[J]. Separation and Purification Technology,2010,71(1):70-75. doi: 10.1016/j.seppur.2009.10.026
    [123] Sahin S, Dykstra J E, Zuilhof H, et al. Modification of cation-exchange membranes with polyelectrolyte multilayers to tune ion selectivity in capacitive deionization[J]. ACS Applied Materials & Interfaces,2020,12(31):34746-34754.
    [124] Pan J F, Zheng Y, Ding J C. Monovalent anions removal by capacitive deionization integrated with monovalent anion permselective exchange membrane[J]. CIESC Journal,2018,69(8):3502-3508.
    [125] Kim D I, Dorji P, Gwak G, et al. Reuse of municipal wastewater via membrane capacitive deionization using ion-selective polymer-coated carbon electrodes in pilot-scale[J]. Chemical Engineering Journal,2019,372:241-250. doi: 10.1016/j.cej.2019.04.156
    [126] Zhang X, Reible D. Theoretical analysis of constant voltage mode membrane capacitive deionization for water softening[J]. Membranes (Basel),2021,11(4):231. doi: 10.3390/membranes11040231
    [127] Choi J, Lee H, Hong S. Capacitive deionization (CDI) integrated with monovalent cation selective membrane for producing divalent cation-rich solution[J]. Desalination,2016,400:38-46. doi: 10.1016/j.desal.2016.09.016
    [128] Tsai S W, Hackl L, Kumar A, et al. Exploring the electrosorption selectivity of nitrate over chloride in capacitive deionization (CDI) and membrane capacitive deionization (MCDI)[J]. Desalination,2021,497:114764. doi: 10.1016/j.desal.2020.114764
    [129] Pang T, Marken F, Zhang D, et al. Investigating the role of dissolved inorganic and organic carbon in fluoride removal by membrane capacitive deionization[J]. Desalination,2022,528:115618. doi: 10.1016/j.desal.2022.115618
    [130] Zhao Z, Zhao J, Sun Y, et al. In-situ construction of 3D hierarchical MoS2/CoS2@TiO2 nanotube hybrid electrodes with superior capacitive performance toward water treatment[J]. Chemical Engineering Journal,2022,429:132582. doi: 10.1016/j.cej.2021.132582
    [131] Hsu C C, Tu Y H, Yang Y H, et al. Improved performance and long-term stability of activated carbon doped with nitrogen for capacitive deionization[J]. Desalination,2020,481:114362. doi: 10.1016/j.desal.2020.114362
    [132] Lee J H, Bae W S, Choi J H. Electrode reactions and adsorption/desorption performance related to the applied potential in a capacitive deionization process[J]. Desalination,2010,258(1-3):159-163. doi: 10.1016/j.desal.2010.03.020
    [133] Han B, Cheng G, Wang Y, et al. Structure and functionality design of novel carbon and faradaic electrode materials for high-performance capacitive deionization[J]. Chemical Engineering Journal,2019,360:364-384. doi: 10.1016/j.cej.2018.11.236
    [134] Liu K, Chen B, Feng A, et al. Bio-composite nanoarchitectonics for graphene tofu as useful source material for capacitive deionization[J]. Desalination,2022,526:115461. doi: 10.1016/j.desal.2021.115461
    [135] Algurainy Y, Call D F. Improving long-term anode stability in capacitive deionization using asymmetric electrode mass ratios[J]. ACS ES& T Engineering,2021,2(1):129-139.
    [136] Ren Z, Liu S, Chen J, et al. One-step synthesis of interface-coupled Si@SiOx@C from whole rice-husks for high-performance lithium storage[J]. Electrochimica Acta,2022,402:139556. doi: 10.1016/j.electacta.2021.139556
    [137] Yu Y, Liu S, Wang W, et al. Eco-friendly utilization of sawdust: Ionic liquid-modified biochar for enhanced Li+ storage of TiO2[J]. Science of The Total Environment,2021,794:148688. doi: 10.1016/j.scitotenv.2021.148688
    [138] Yao Q and Tang H L. Effect of desorption methods on electrode regeneration performance of capacitive deionization[J]. Journal of Environmental Engineering,2017,143(9):04017047. doi: 10.1061/(ASCE)EE.1943-7870.0001245
    [139] Zhang H. Regeneration of exhausted activated carbon by electrochemical method[J]. Chemical Engineering Journal,2002,85(1):81-85. doi: 10.1016/S1385-8947(01)00176-0
    [140] Chen L, Yin X, Zhu L, et al. Energy recovery and electrode regeneration under different charge/discharge conditions in membrane capacitive deionization[J]. Desalination,2018,439:93-101. doi: 10.1016/j.desal.2018.04.012
    [141] Zou L, Morris G and Qi D. Using activated carbon electrode in electrosorptive deionisation of brackish water[J]. Desalination,2008,225(1-3):329-340. doi: 10.1016/j.desal.2007.07.014
    [142] Jiang Z Y, Yang M, Wang Q, et al. Magnetic-assisted strategy for performance enhancement of flow-by capacitive deionization[J]. Desalination,2023,548:116274. doi: 10.1016/j.desal.2022.116274
    [143] Angeles A T and Lee J. Carbon-based capacitive deionization electrodes: Development techniques and its influence on electrode properties[J]. The Chemical Record,2021,21(4):820-840. doi: 10.1002/tcr.202000182
    [144] Lv X L, Xiao R L, Wu H B, et al. Research progress of capacitive deionization with carbon-based materials electrode[J]. Technology of Water Treatment,2020,46(08):17-21+33. doi: 10.16796/j.cnki.1000-3770.2020.08.004
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  496
  • HTML全文浏览量:  210
  • PDF下载量:  105
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-12
  • 录用日期:  2023-08-23
  • 修回日期:  2023-08-23
  • 网络出版日期:  2023-09-25
  • 刊出日期:  2023-10-01

目录

    /

    返回文章
    返回