留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

3D porous NiCo2(CO3)3/reduced graphene oxide aerogel with heterogeneous interfaces for high-efficiency microwave absorption

WU Dan-dan ZHANG Han-xiao WANG Zheng-yan ZHANG Yan-lan WANG Yong-zhen

武丹丹, 张含笑, 王政炎, 张妍兰, 王永祯. 用于高效微波吸收的3D多孔异质界面型NiCo2(CO3)3/RGO气凝胶. 新型炭材料(中英文), 2023, 38(6): 1035-1049. doi: 10.1016/S1872-5805(23)60780-2
引用本文: 武丹丹, 张含笑, 王政炎, 张妍兰, 王永祯. 用于高效微波吸收的3D多孔异质界面型NiCo2(CO3)3/RGO气凝胶. 新型炭材料(中英文), 2023, 38(6): 1035-1049. doi: 10.1016/S1872-5805(23)60780-2
WU Dan-dan, ZHANG Han-xiao, WANG Zheng-yan, ZHANG Yan-lan, WANG Yong-zhen. 3D porous NiCo2(CO3)3/reduced graphene oxide aerogel with heterogeneous interfaces for high-efficiency microwave absorption. New Carbon Mater., 2023, 38(6): 1035-1049. doi: 10.1016/S1872-5805(23)60780-2
Citation: WU Dan-dan, ZHANG Han-xiao, WANG Zheng-yan, ZHANG Yan-lan, WANG Yong-zhen. 3D porous NiCo2(CO3)3/reduced graphene oxide aerogel with heterogeneous interfaces for high-efficiency microwave absorption. New Carbon Mater., 2023, 38(6): 1035-1049. doi: 10.1016/S1872-5805(23)60780-2

用于高效微波吸收的3D多孔异质界面型NiCo2(CO3)3/RGO气凝胶

doi: 10.1016/S1872-5805(23)60780-2
基金项目: 中央引导地方科技发展资金项目 (YDZJSX2022B003);山西省科技重大专项计划项目 (202101120401008);山西省重点研发计划项目(202102030201006);山西省自然科学基金项目 (202203021212205);山西省高等学校科技创新项目 (2022L074)
详细信息
    通讯作者:

    张妍兰,讲师. E-mail:zhangyanlan@tyut.edu.cn

    王永祯,教授. E-mail:wangyongzhen@tyut.edu.cn

  • 中图分类号: TB33

3D porous NiCo2(CO3)3/reduced graphene oxide aerogel with heterogeneous interfaces for high-efficiency microwave absorption

More Information
  • 摘要: 创新的微观结构设计和合适的多组分策略对于具有强吸收和宽有效吸收频带(EAB)的先进电磁吸波材料(EAM)仍然具有挑战性。本文采用简单的水热还原法制备了自组装的3D网络结构NiCo2(CO3)3/RGO(NCR)气凝胶。独特的微观结构和多组分不仅解决了NiCo2(CO3)3颗粒的物理团聚,而且可以调整电磁参数以提高阻抗匹配和衰减能力。界面基体和宏观3D互联网格结构的协同效应可以实现高电磁波吸收(EMA)性能,在2.3 mm处最小反射损耗(RLmin)值为−58.5 dB,EAB为6.5 GHz。NiCo2(CO3)3/RGO气凝胶优异的EMA性能可归因于3D多孔结构的多重反射、散射和弛豫过程以及界面基体的强界面极化。
  • FIG. 2776.  FIG. 2776.

    FIG. 2776..  FIG. 2776.

    Figure  1.  Synthetic procedure of NCR aerogel

    Figure  2.  (a) XRD patterns of NC, NCR-1, NCR-2 and RGO. (b) Digital photograph of NCR-1 aerogel. (c) SEM image of NC. (d-f) SEM images of NCR-1 with different resolutions. (g-i) SEM images of NCR-2 with different resolutions. (j-m) EDS elemental mapping images of the NCR-1 (dashed area in Fig. e). (j) Co, (k) Ni, (l) O, (m) C

    Figure  3.  (a) XPS spectra of NC, NCR-1 and NCR-2. XPS spectra of (b) C 1s, (c) O 1s, (d) Ni 2p, and (e) Co 2p of NC, NCR-1 and NCR-2. (f) Raman spectra of NC, NCR-1 and NCR-2

    Figure  4.  (a, b) The real part (ε') and the imaginary part (ε") of complex permittivity, (c, d) the real part (μ') and the imaginary part (μ") of complex permeability of NC, NCR-1, NCR-2

    Figure  5.  (a, b) Dielectric and magnetic loss tangents (ε″/ε′, μ"/μ'), (c) C0–f curves and (d) attenuation constant of NC, NCR-1, NCR-2

    Figure  6.  (a, b, c) RLmin, 1/4 λ curve, and impedance matching of NC, NCR-1 and NCR-2 at frequency and different thicknesses

    Figure  7.  (a-c) Cole-Cole plots of NC, NCR-1 and NCR-2. (d) EIS spectra

    Figure  8.  Calculated theoretical RL value of NC, NCR-1, NCR-2: (a) three-dimensional images and (b) two-dimensional projection images

    Figure  9.  (a) Comprehensive comparison of the EMA performance based on RLmin and EAB of NC, NCR-1, NCR-2 and RGO. (b) Comprehensive comparison of the EMA performance given RLmin, and EAB with reported EMA materials

    Figure  10.  Schematic illustration of EM wave absorption for NCR

  • [1] Liu D, Mou P, Wei Q, et al. Nanowires/nanohelices hybrid carbon aerogels as the lightweight and hydrophobic microwave absorbers with excellent electrothermal properties[J]. Carbon,2023,204:7-16. doi: 10.1016/j.carbon.2022.12.038
    [2] Feng A, Hou T, Jia Z, et al. Synthesis of a hierarchical carbon fiber@cobalt ferrite@manganese dioxide composite and its application as a microwave absorber[J]. RSC Advances,2020,10(18):10510-10518. doi: 10.1039/C9RA10327A
    [3] Hua A, Li Y, Pan D, et al. Enhanced wideband microwave absorption of hollow carbon nanowires derived from a template of Al4C3@C nanowires[J]. Carbon,2020,161:252-258. doi: 10.1016/j.carbon.2020.01.081
    [4] Liu X, Huang Y, Zhao X, et al. Core-shell N-doped carbon nanofibers@poly(3, 4-ethylenedioxythiophene): Flexible composite fibers for enhanced electromagnetic wave absorption[J]. Composites Part A:Applied Science and Manufacturing,2022,163:107227. doi: 10.1016/j.compositesa.2022.107227
    [5] Zhang M, Ling H, Ding S, et al. Synthesis of CF@PANI hybrid nanocomposites decorated with Fe3O4 nanoparticles towards excellent lightweight microwave absorber[J]. Carbon,2021,174:248-259. doi: 10.1016/j.carbon.2020.12.005
    [6] Xu H, Yin X, Zhu M, et al. Carbon hollow microspheres with a designable mesoporous shell for high-performance electromagnetic wave absorption[J]. ACS Appl Mater Interfaces,2017,9(7):6332-6341. doi: 10.1021/acsami.6b15826
    [7] Song L, Chen Y, Gao Q, et al. Low weight, low thermal conductivity, and highly efficient electromagnetic wave absorption of three-dimensional graphene/SiC-nanosheets aerogel[J]. Composites Part A: Applied Science and Manufacturing,2022,158:106980. doi: 10.1016/j.compositesa.2022.106980
    [8] Liang L, Li Q, Yan X, et al. Multifunctional magnetic Ti3C2Tx MXene/graphene aerogel with superior electromagnetic wave absorption performance[J]. ACS Nano,2021,15(4):6622-6632. doi: 10.1021/acsnano.0c09982
    [9] Xin W L, Lu K K, Shan D. In situ doped CoCO3/ZIF-67 derived Co-N-C/CoOx catalysts for oxygen reduction reaction[J]. Applied Surface Science,2019,481:313-318. doi: 10.1016/j.apsusc.2019.03.021
    [10] Talebi P, Singh H, Rani E, et al. Surface plasmon-driven photocatalytic activity of Ni@NiO/NiCO3 core-shell nanostructures[J]. RSC Adv,2021,11(5):2733-2743. doi: 10.1039/D0RA09666K
    [11] Cheng C, Chen F, Cheng Y, et al. Hydrothermal synthesis of caterpillar-like one-dimensional NiCO3 nanosheet arrays and primary lithium battery application[J]. Dalton Trans,2022,51(17):6832-6838. doi: 10.1039/D2DT00091A
    [12] Zhao Z, Wang Z, Denis D K, et al. Intrinsic lithium storage mechanisms and superior electrochemical behaviors of monodispersed hierarchical CoCO3 sub-microspheroids as a competitive anode towards Li-ion batteries[J]. Electrochimica Acta,2019,307:20-29. doi: 10.1016/j.electacta.2019.03.171
    [13] Wang P, Zhang F, Wu C, et al. Cobalt carbonate-coated nitrogen-doped carbon nanotubes with a sea-cucumber morphology for electrocatalytic water splitting[J]. Langmuir,2021,37(50):14767-14776. doi: 10.1021/acs.langmuir.1c02874
    [14] Liu Z, Zhou X, Zhang Y, et al. Fabrication of monodispersed, uniform rod-shaped FeCO3/CoCO3 microparticles using a facile solvothermal method and their excellent microwave absorbing properties[J]. Journal of Alloys and Compounds,2016,665:388-393. doi: 10.1016/j.jallcom.2016.01.054
    [15] Wei H, Wang X, Tong G, et al. Morphology, size and defect engineering in CeOHCO3 hierarchical structures for ultra-wide band microwave absorption[J]. Journal of Materials Chemistry C,2022,10(1):281-293. doi: 10.1039/D1TC04430C
    [16] Cui Y, Yang K, Zhang F, et al. Ultra-light MXene/CNTs/PI aerogel with neat arrangement for electromagnetic wave absorption and photothermal conversion[J]. Composites Part A:Applied Science and Manufacturing,2022,158:106986. doi: 10.1016/j.compositesa.2022.106986
    [17] Liu Z, Fan Y, Liu Z, et al. Wrinkled 3D MoS2/RGO/NC composite microspheres: Optimal composition and microwave absorbing properties[J]. Composites Part A: Applied Science and Manufacturing, 2022, 161.
    [18] Lou Z, Yuan C, Zhang Y, et al. Synthesis of porous carbon matrix with inlaid Fe3C/Fe3O4 micro-particles as an effective electromagnetic wave absorber from natural wood shavings[J]. Journal of Alloys and Compounds,2019,775:800-809. doi: 10.1016/j.jallcom.2018.10.213
    [19] Wang S, Li D, Zhou Y, et al. Hierarchical Ti3C2Tx MXene/Ni chain/ZnO array hybrid nanostructures on cotton fabric for durable self-cleaning and enhanced microwave absorption[J]. ACS Nano,2020,14(7):8634-8645. doi: 10.1021/acsnano.0c03013
    [20] Wang J, Cui Y, Wu F, et al. Core-shell structured Fe/Fe3O4@TCNFs@TiO2 magnetic hybrid nanofibers: Preparation and electromagnetic parameters regulation for enhanced microwave absorption[J]. Carbon,2020,165:275-285. doi: 10.1016/j.carbon.2020.04.090
    [21] Zhang B, Wang J, Wang T, et al. High-performance microwave absorption epoxy composites filled with hollow nickel nanoparticles modified graphene via chemical etching method[J]. Composites Science and Technology,2019,176:54-63. doi: 10.1016/j.compscitech.2019.04.001
    [22] Zhang M, Ling H, Wang T, et al. An equivalent substitute strategy for constructing 3D ordered porous carbon foams and their electromagnetic attenuation mechanism[J]. Nanomicro Lett,2022,14(1):157.
    [23] Hu K, Szkopek T, Cerruti M. Tuning the aggregation of graphene oxide dispersions to synthesize elastic, low density graphene aerogels[J]. Journal of Materials Chemistry A,2017,5(44):23123-23130. doi: 10.1039/C7TA07006C
    [24] Yan L, Hong C, Sun B, et al. In situ growth of core-sheath heterostructural SiC nanowire arrays on carbon fibers and enhanced electromagnetic wave absorption performance[J]. ACS Appl Mater Interfaces,2017,9(7):6320-6331. doi: 10.1021/acsami.6b15795
    [25] Gui W, Duan F, Mu X. Enhanced adsorption of graphene oxide on iron surface induced by functional groups[J]. Applied Surface Science, 2020, 528.
    [26] Zhou Z, Zhao W, Zhao Z, et al. Boosted interfacial polarization from the multidimensional core–shell–flat heterostructure CNP@PDA@GO/rGO for enhanced microwave absorption[J]. Industrial & Engineering Chemistry Research,2021,60(33):12343-12352.
    [27] Yoo M J, Park H B. Effect of hydrogen peroxide on properties of graphene oxide in hummers method[J]. Carbon,2019,141:515-522. doi: 10.1016/j.carbon.2018.10.009
    [28] Zhao N, Feng Y, Zhao H, et al. Simple electrodeposition of 3D NiCoFe-layered double hydroxide nanosheet assembled nanospheres/nanoflowers on carbon cloth for high performance hybrid supercapacitors[J]. Journal of Alloys and Compounds, 2022, 901.
    [29] Xu H, Wang B, Shan C, et al. Ce-doped NiFe-layered double hydroxide ultrathin nanosheets/nanocarbon hierarchical nanocomposite as an efficient oxygen evolution catalyst[J]. ACS Appl Mater Interfaces,2018,10(7):6336-6345. doi: 10.1021/acsami.7b17939
    [30] Liao F, Yang G, Cheng Q, et al. Rational design and facile synthesis of Ni-Co-Fe ternary LDH porous sheets for high-performance aqueous asymmetric supercapacitor[J]. Electrochimica Acta, 2022, 428.
    [31] Gnanamoorthy G, Karthikeyan V, Ali D, et al. Realization of rGO/ZnCo2O4 nanocomposites enhanced for the antimicrobial, electrochemical and photocatalytic activities[J]. Diamond and Related Materials, 2021, 120.
    [32] Gupta B, Kumar N, Panda K, et al. Role of oxygen functional groups in reduced graphene oxide for lubrication[J]. Sci Rep,2017,7:45030. doi: 10.1038/srep45030
    [33] Lai Y C, Chen S Q, Mou L Y, et al . Nanoscale electromagnetic boundary conditions based on Maxwell’s equations[J]. Acta Physica Sinica, 2021, 70(23).
    [34] Yu T, Qiu J, Liao J, et al. Topological transformation strategy for layered double hydroxide@carbon nanofibers as highly efficient electromagnetic wave absorber[J]. Journal of Alloys and Compounds,2021,867:159046. doi: 10.1016/j.jallcom.2021.159046
    [35] Shao G, Ovsianytskyi O, Bekheet M F, et al. On-chip assembly of 3D graphene-based aerogels for chemiresistive gas sensing[J]. Chem Commun (Camb),2020,56(3):450-453. doi: 10.1039/C9CC09092D
    [36] Heine C, Lechner B A, Bluhm H, et al. Recycling of CO2: probing the chemical state of the Ni(111) surface during the methanation reaction with ambient-pressure X-Ray photoelectron spectroscopy[J]. J Am Chem Soc,2016,138(40):13246-13252. doi: 10.1021/jacs.6b06939
    [37] Wang S G, Lin J, Fan C Y, et al. Target encapsulating NiMoO4 nanocrystals into 1D carbon nanofibers as free-standing anode material for lithium-ion batteries with enhanced cycle performance[J]. Journal of Alloys and Compounds,2020,830:154648. doi: 10.1016/j.jallcom.2020.154648
    [38] Yang J, Zhang X, Zhou X, et al. Controlled synthesis of nickel carbide nanoparticles and their application in lithium storage[J]. Chemical Engineering Journal,2018,352:940-946. doi: 10.1016/j.cej.2018.06.066
    [39] Su J, Nie Z, Feng Y, et al. Hollow core–shell structure Co/C@MoSe2 composites for high-performance microwave absorption[J]. Composites Part A:Applied Science and Manufacturing,2022,162:107140. doi: 10.1016/j.compositesa.2022.107140
    [40] Golovin A V, Korsakov A V, Gavryushkin P N, et al. Raman spectra of nyerereite, gregoryite, and synthetic pure Na2Ca(CO3)2: diversity and application for the study micro inclusions[J]. Journal of Raman Spectroscopy,2017,48(11):1559-1565. doi: 10.1002/jrs.5143
    [41] Arefiev A, Shatskiy A, Bekhtenova A, et al. Raman study of quench products of alkaline carbonate melt at 3 and 6 GPa: Link to the pressure of origin[J]. Journal of Raman Spectroscopy,2022,53(12):2110-2122. doi: 10.1002/jrs.6438
    [42] Xu R, Xu D, Zeng Z, et al. CoFe2O4/porous carbon nanosheet composites for broadband microwave absorption[J]. Chemical Engineering Journal,2022,427:130796. doi: 10.1016/j.cej.2021.130796
    [43] Yuan H, Yan F, Li C, et al. Nickel nanoparticle encapsulated in few-layer nitrogen-doped graphene supported by nitrogen-doped graphite sheets as a high-performance electromagnetic wave absorbing material[J]. ACS Appl Mater Interfaces,2018,10(1):1399-1407. doi: 10.1021/acsami.7b15559
    [44] Liang J, Chen J, Shen H, et al. Hollow porous bowl-like nitrogen-doped cobalt/carbon nanocomposites with enhanced electromagnetic wave absorption[J]. Chemistry of Materials,2021,33(5):1789-1798. doi: 10.1021/acs.chemmater.0c04734
    [45] Ji H, Li J, Zhang J, et al. Remarkable microwave absorption performance of ultralight graphene-polyethylene glycol composite aerogels with a very low loading ratio of graphene[J]. Composites Part A:Applied Science and Manufacturing,2019,123:158-169. doi: 10.1016/j.compositesa.2019.05.012
    [46] Zheng S, Zeng Z, Qiao J, et al. Facile preparation of C/MnO/Co nanocomposite fibers for High-Performance microwave absorption[J]. Composites Part A:Applied Science and Manufacturing,2022,155:106814. doi: 10.1016/j.compositesa.2022.106814
    [47] Liu J, Liang H, Zhang Y, et al. Facile synthesis of ellipsoid-like MgCo2O4/Co3O4 composites for strong wideband microwave absorption application[J]. Composites Part B:Engineering,2019,176:107240. doi: 10.1016/j.compositesb.2019.107240
    [48] Zhao Z, Xu S, Du Z, et al. Metal–organic framework-based PB@MoS2 core–shell microcubes with high efficiency and broad bandwidth for microwave absorption performance[J]. ACS Sustainable Chemistry & Engineering,2019,7(7):7183-7192.
    [49] Guan G, Gao G, Xiang J, et al. CoFe2/BaTiO3 hybrid nanofibers for microwave absorption[J]. ACS Applied Nano Materials,2020,3(8):8424-8437. doi: 10.1021/acsanm.0c01855
    [50] Zhong W, Li B, Ma Z, et al. Double salt-template strategy for the growth of N, S-codoped graphitic carbon nanoframes on the graphene toward high-performance electromagnetic wave absorption[J]. Carbon,2023,202:235-243. doi: 10.1016/j.carbon.2022.10.086
    [51] Jiang B, Yang W, Wang C, et al. Lightweight porous cobalt-encapsulated Nitrogen-Doped Carbon nanotubes for tunable, efficient and stable electromagnetic waves absorption[J]. Carbon,2023,202:173-186. doi: 10.1016/j.carbon.2022.10.032
    [52] Wang Y, Bo J, Sai C, et al. Research progress on carbon-based materials for electromagnetic wave absorption and the related mechanisms[J]. New Carbon Mater,2021,36(6):1016. doi: 10.1016/S1872-5805(21)60095-1
    [53] Li Y, Sun N, Liu J, et al. Multifunctional BiFeO3 composites: Absorption attenuation dominated effective electromagnetic interference shielding and electromagnetic absorption induced by multiple dielectric and magnetic relaxations[J]. Composites Science and Technology,2018,159:240-250. doi: 10.1016/j.compscitech.2018.02.014
    [54] Li Y, Wang G, Gong A, et al. High-performance ferroelectric electromagnetic attenuation materials with multiple polar units based on nanodomain engineering[J]. Small,2022,18(12):2106302. doi: 10.1002/smll.202106302
    [55] Qin M, Zhang L, Zhao X, et al. Lightweight Ni foam-based ultra-broadband electromagnetic wave absorber[J]. Advanced Functional Materials,2021,31(30):2103436. doi: 10.1002/adfm.202103436
    [56] Zhou M, Xu X, Wan G, et al. Rationally tailoring interface characteristics of ZnO/amorphous carbon/graphene for heat-conduction microwave absorbers[J]. Nano Research,2022,15(10):8677-8687. doi: 10.1007/s12274-022-4521-1
    [57] Xu H, Li B, Jiang X, et al. Fabrication of N−doped carbon nanotube/carbon fiber dendritic composites with abundant interfaces for electromagnetic wave absorption[J]. Carbon,2023,201:234-243. doi: 10.1016/j.carbon.2022.09.033
    [58] Tsangaris G M, Psarras G C, Kouloumbi N. Electric modulus and interfacial polarization in composite polymeric systems[J]. Journal of Materials Science,1998,3:2027-2037.
    [59] Xiang Z, Huang C, Song Y, et al. Rational construction of hierarchical accordion-like Ni@porous carbon nanocomposites derived from metal-organic frameworks with enhanced microwave absorption[J]. Carbon,2020,167:364-377. doi: 10.1016/j.carbon.2020.06.015
  • -20230603Supporting Information.pdf
  • 加载中
图(11)
计量
  • 文章访问数:  230
  • HTML全文浏览量:  76
  • PDF下载量:  105
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-14
  • 录用日期:  2023-09-21
  • 修回日期:  2023-09-16
  • 网络出版日期:  2023-10-21
  • 刊出日期:  2023-11-23

目录

    /

    返回文章
    返回