留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A one-pot method to prepare a multi-metal sulfide/carbon composite with a high lithium-ion storage capability

ZHANG Wei-cai YANG Chao-wei HU Shu-yu FANG Ya-wei LIN Xiao-min XIE Zhuo-hao ZHENG Ming-tao LIU Ying-liang LIANG Ye-ru

张伟财, 杨朝炜, 胡书宇, 方亚伟, 林晓敏, 谢卓豪, 郑明涛, 刘应亮, 梁业如. 一锅法合成多金属硫化物/碳复合材料及其储锂性能. 新型炭材料(中英文), 2023, 38(6): 1080-1091. doi: 10.1016/S1872-5805(23)60781-4
引用本文: 张伟财, 杨朝炜, 胡书宇, 方亚伟, 林晓敏, 谢卓豪, 郑明涛, 刘应亮, 梁业如. 一锅法合成多金属硫化物/碳复合材料及其储锂性能. 新型炭材料(中英文), 2023, 38(6): 1080-1091. doi: 10.1016/S1872-5805(23)60781-4
ZHANG Wei-cai, YANG Chao-wei, HU Shu-yu, FANG Ya-wei, LIN Xiao-min, XIE Zhuo-hao, ZHENG Ming-tao, LIU Ying-liang, LIANG Ye-ru. A one-pot method to prepare a multi-metal sulfide/carbon composite with a high lithium-ion storage capability. New Carbon Mater., 2023, 38(6): 1080-1091. doi: 10.1016/S1872-5805(23)60781-4
Citation: ZHANG Wei-cai, YANG Chao-wei, HU Shu-yu, FANG Ya-wei, LIN Xiao-min, XIE Zhuo-hao, ZHENG Ming-tao, LIU Ying-liang, LIANG Ye-ru. A one-pot method to prepare a multi-metal sulfide/carbon composite with a high lithium-ion storage capability. New Carbon Mater., 2023, 38(6): 1080-1091. doi: 10.1016/S1872-5805(23)60781-4

一锅法合成多金属硫化物/碳复合材料及其储锂性能

doi: 10.1016/S1872-5805(23)60781-4
基金项目: 茂名实验室自主科研项目(2022ZD002);国家自然科学基金项目(51972121,52373074)
详细信息
    通讯作者:

    刘应亮,教授. E-mail:tliuyl@scau.edu.cn

    梁业如,教授. E-mail:liangyr@scau.edu.cn

  • 中图分类号: TQ127.1+1

A one-pot method to prepare a multi-metal sulfide/carbon composite with a high lithium-ion storage capability

Funds: This work was financially supported by Independent Research Project of Maoming Laboratory (2022ZD002) and National Natural Science Foundation of China (51972121 and 52373074)
More Information
  • 摘要: 多金属硫化物/碳(MMS/C)复合材料因其良好的结构稳定性、充足的活性位点和有益的协同效应,在能源、催化、传感、环境科学等领域具有良好的应用潜力。然而,MMS/C复合材料繁琐、低效和对环境有害的制备方法制约了其发展。本文报道了一种简易、通用的制备策略合成了系列MMS/C复合材料。该策略的关键是采用了碳源−非碳前驱体一体化的离子交换树脂−金属离子杂化组装体作为构筑单元,可实现均匀的多相有机/无机界面,在高温条件下原位生成封装于碳骨架中的金属硫化物。通过改变金属离子的种类,实现了14 种 MMS/C 复合材料的合成。基于其组分和结构优势,所制MMS/C复合材料表现出高效、快速和持久的锂离子存储性能。其中,ZnS-Co9S8/C复合材料在0.1 A·g−1电流密度下循环600次后仍具有651 mAh·g−1的可逆储锂容量;当电流密度提高20倍时,容量保持率超过54%,展现出优异的倍率性能。本文提出的均一、多相有机/无机界面合成策略有望扩展用于制备其他金属化合物(如金属磷化物、金属硒化物等)/碳复合材料,为多金属化合物/碳复合材料的合成提供有效的途径。
  • FIG. 2780.  FIG. 2780.

    FIG. 2780..  FIG. 2780.

    Figure  1.  Synthetic scheme for preparing MMS/C composites by taking BMS/C composites as example. (a) Traditional post-synthesis strategy and (b) simplified post-synthesis strategy. (c) One-pot synthetic route by using a homogeneous multi-phase interfacial engineering

    Figure  2.  (a) Digital photos of IER-S before and after coordination. (b) Schematic illustration of Zn2+ and Co2+ combined with IER-S. (c) EDS images, (d) FTIR spectra of IER-S before and after coordination. (e) S 2p and (f) O 1s spectra of IER-S-Zn/Co. The inset in (f) shows a schematic diagram of the structure of 2 benzenesulfonates coupling to a divalent metal ion

    Figure  3.  (a) Mass content and relative amount of substance of Zn, Co, and S elements in IER-S-Zn/Co. (b) XRD patterns of distinct samples obtained by heating IER-S-Zn/Co under different temperatures. (c) TGA curve obtained by heat treatment IER-S-Zn/Co under N2 flow. (d) Schematic of the evolution for IER-S-Zn/Co during the heating process. (e) SEM image, (f) EDS mapping images, (g) HRTEM image, (h) TGA curve, (i) XRD pattern and (j) S 2p spectrum of ZnS-Co9S8/C

    Figure  4.  (a) Digital photos of different IER-S-M1/M2 hybrid assemblies. (b) Synthesis schematic of BMS/C composites. (c) XRD patterns and (d–g) SEM images of BMS/C composites

    Figure  5.  (a) Schematic illustration for fabrication of TMS/C composites. (b) Digital photos of different IER-S-M1/M2/M3 hybrid assemblies. (c-e) EDS mapping images, (f-h) SEM images, and (i) XRD patterns of TMS/C composites

    Figure  6.  Cycling performances of ZnS-Co9S8/C, Co9S8/C, and ZnS/C anodes at (a) 0.1 A·g−1 and (b) 1 A·g−1, (c) Rate performances of the ZnS-Co9S8/C, Co9S8/C and ZnS/C anodes, (d) Nyquist plots, (e) resistance, and (f) DLi of ZnS-Co9S8/C, Co9S8/C and ZnS/C anodes in LIB

    Figure  7.  Schematic illustration of fast electron and ion transportation of ZnS-Co9S8/C anode

  • [1] Service R F. Lithium-ion battery development takes nobel[J]. Science,2019,366(6463):292-292. doi: 10.1126/science.366.6463.292
    [2] Li M, Lu J, Chen Z W, et al. 30 years of lithium-ion batteries[J]. Advanced Materials,2018,30(33):24.
    [3] Liang Y, Zhao C Z, Yuan H, et al. A review of rechargeable batteries for portable electronic devices[J]. InfoMat,2019,1(1):6-32. doi: 10.1002/inf2.12000
    [4] Zubi G, Dufo-Lopez R, Carvalho M, et al. The lithium-ion battery: State of the art and future perspectives[J]. Renewable & Sustainable Energy Reviews,2018,89:292-308.
    [5] Cheng H, Shapter J G, Li Y Y, et al. Recent progress of advanced anode materials of lithium-ion batteries[J]. Journal of Energy Chemistry,2021,57:451-468. doi: 10.1016/j.jechem.2020.08.056
    [6] Pender J P, Jha G, Youn D H, et al. Electrode degradation in lithium-ion batteries[J]. ACS Nano,2020,14:1243-1295. doi: 10.1021/acsnano.9b04365
    [7] Lu J, Chen Z W, Pan F, et al. High-performance anode materials for rechargeable lithium-ion batteries[J]. Electrochemical Energy Reviews,2018,1(1):35-53. doi: 10.1007/s41918-018-0001-4
    [8] Wu F X, Maier J, Yu Y. Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries[J]. Chemical Society Reviews,2020,49(5):1569-1614. doi: 10.1039/C7CS00863E
    [9] Li S Q, Wang K, Zhang G F, et al. Fast charging anode materials for lithium-ion batteries: Current status and perspectives[J]. Advanced Functional Materials,2022,32(23):35.
    [10] Roselin L S, Juang R S, Hsieh C T, et al. Recent advances and perspectives of carbon-based nanostructures as anode materials for li-ion batteries[J]. Materials,2019,12(8):46.
    [11] Zhu C Y, Ye Y W, Guo X, et al. Design and synthesis of carbon-based nanomaterials for electrochemical energy storage[J]. New Carbon Materials,2022,37(1):59-86. doi: 10.1016/S1872-5805(22)60579-1
    [12] Zhao J B, Zhang Y Y, Wang Y H, et al. The application of nanostructured transition metal sulfides as anodes for lithium ion batteries[J]. Journal of Energy Chemistry,2018,27(6):1536-1554. doi: 10.1016/j.jechem.2018.01.009
    [13] Zhao Y, Wang L P, Sougrati M T, et al. A review on design strategies for carbon based metal oxides and sulfides nanocomposites for high performance li and na ion battery anodes[J]. Advanced Energy Materials,2017,7(9):70.
    [14] Shan Y Y, Li Y, Pang H. Applications of tin sulfide-based materials in lithium-ion batteries and sodium-ion batteries[J]. Advanced Functional Materials,2020,30(23):31.
    [15] Kong L, Liu Y, Huang H, et al. Interconnected CoC2/NC-CNTs network as high-performance anode materials for lithium-ion batteries[J]. Science China Materials,2021,64(4):820-829. doi: 10.1007/s40843-020-1477-0
    [16] Chen L, Liu Y, Deng Z, et al. Edge-enriched MoS2@C/rGO film as self-standing anodes for high-capacity and long-life lithium-ion batteries[J]. Science China Materials,2021,64(1):96-104. doi: 10.1007/s40843-020-1348-y
    [17] Lin L, Wang K, Sarkar A, et al. High-entropy sulfides as electrode materials for li-ion batteries[J]. Advanced Energy Materials,2022,12(8):2103090. doi: 10.1002/aenm.202103090
    [18] Zhang Y, Wang Q, Zhu K, et al. Built-in electric field induced interfacial effect enables ultrasmall snsx nanoparticles with high-rate lithium/sodium storage[J]. Chemical Engineering Journal,2022,446:137286. doi: 10.1016/j.cej.2022.137286
    [19] Ye Z Q, Jiang Y, Li L, et al. Synergetic anion vacancies and dense heterointerfaces into bimetal chalcogenide nanosheet arrays for boosting electrocatalysis sulfur conversion[J]. Advanced Materials,2022,34(13):2109552. doi: 10.1002/adma.202109552
    [20] Cao L, Gao X W, Zhang B, et al. Bimetallic sulfide Sb2S3@FeS2 hollow nanorods as high-performance anode materials for sodium-ion batteries[J]. ACS Nano,2020,14(3):3610-3620. doi: 10.1021/acsnano.0c00020
    [21] Kang L, Zhang M Y, Zhang J, et al. Dual-defect surface engineering of bimetallic sulfide nanotubes towards flexible asymmetric solid-state supercapacitors[J]. Journal of Materials Chemistry A,2020,8(45):24053-24064. doi: 10.1039/D0TA08979F
    [22] Li D, Liu Z, Wang J R, et al. Hierarchical trimetallic sulfide FeCo2S4-NiCo2S4 nanosheet arrays supported on a ti mesh: An efficient 3d bifunctional electrocatalyst for full water splitting[J]. Electrochimica Acta,2020,340:135957. doi: 10.1016/j.electacta.2020.135957
    [23] Zhang C Q, Lu R H, Liu C, et al. Trimetallic sulfide hollow superstructures with engineered d-band center for oxygen reduction to hydrogen peroxide in alkaline solution[J]. Advanced Science,2022,9(12):2104768. doi: 10.1002/advs.202104768
    [24] Yu X, Zhang W W, She L L, et al. Electrodeposition-derived defect-rich heterogeneous trimetallic sulfide/hydroxide nanotubes/nanobelts for efficient electrocatalytic oxygen production[J]. Chemical Engineering Journal,2022,430:133073. doi: 10.1016/j.cej.2021.133073
    [25] Jia R, Li L, Shen G, et al. Hierarchical Sb2S3/SnS2/C heterostructure with improved performance for sodium-ion batteries[J]. Science China Materials,2022,65(6):1443-1452. doi: 10.1007/s40843-021-1931-0
    [26] Guan B, Sheng L, Zhang N, et al. Bimetallic metal-organic framework derived transition metal sulfide microspheres as high-performance lithium/sodium storage materials[J]. Chemical Engineering Journal,2022,446:137154. doi: 10.1016/j.cej.2022.137154
    [27] Fang G Z, Wu Z X, Zhou J, et al. Observation of pseudocapacitive effect and fast ion diffusion in bimetallic sulfides as an advanced sodium-ion battery anode[J]. Advanced Energy Materials,2018,8(19):1703155. doi: 10.1002/aenm.201703155
    [28] Chen J W, Li S H, Kumar V, et al. Carbon coated bimetallic sulfide hollow nanocubes as advanced sodium ion battery anode[J]. Advanced Energy Materials,2017,7(19):1700180. doi: 10.1002/aenm.201700180
    [29] Gai L X, Song G L, Li Y Y, et al. Versatile bimetal sulfides nanoparticles-embedded N-doped hierarchical carbonaceous aerogels (N-NixSy/CoxSy@C) for excellent supercapacitors and microwave absorption[J]. Carbon,2021,179:111-124. doi: 10.1016/j.carbon.2021.04.029
    [30] Lee J S, Saroha R, Oh S H, et al. Rational design of perforated bimetallic (Ni, Mo) sulfides/N-doped graphitic carbon composite microspheres as anode materials for superior Na-ion batteries[J]. Small Methods,2021,5(9):2100195. doi: 10.1002/smtd.202100195
    [31] Wei X J, Zhang Y B, Zhang B K, et al. Yolk-shell-structured zinc-cobalt binary metal sulfide@N-doped carbon for enhanced lithium-ion storage[J]. Nano Energy,2019,64:103899. doi: 10.1016/j.nanoen.2019.103899
    [32] Li H, He Y Y, Dai Y X, et al. Bimetallic SnS2/NiS2@S-rGO nanocomposite with hierarchical flower-like architecture for superior high rate and ultra-stable half/full sodium-ion batteries[J]. Chemical Engineering Journal,2022,427:131784. doi: 10.1016/j.cej.2021.131784
    [33] Wang B, Chen Y F, Wang X Q, et al. RGO wrapped trimetallic sulfide nanowires as an efficient bifunctional catalyst for electrocatalytic oxygen evolution and photocatalytic organic degradation[J]. Journal of Materials Chemistry A,2020,8(27):13558-13571. doi: 10.1039/D0TA04383D
    [34] Huang Y, Xiong D B, Li X F, et al. Recent advances of bimetallic sulfide anodes for sodium ion batteries[J]. Frontiers in Chemistry,2020,8:17. doi: 10.3389/fchem.2020.00017
    [35] Goncalves J M, da Silva M I, Hasheminejad M, et al. Recent progress in core@shell sulfide electrode materials for advanced supercapacitor devices[J]. Batteries Supercaps,2021,4(9):1397-1427. doi: 10.1002/batt.202100017
    [36] Li S, Hua M H, Yang Y, et al. Phosphorous-doped bimetallic sulfides embedded in heteroatom-doped carbon nanoarrays for flexible all-solid-state supercapacitors[J]. Science China-Materials,2021,64(10):2439-2453. doi: 10.1007/s40843-020-1667-1
    [37] Li SJ, Ge P, Jiang F, et al. The advance of nickel-cobalt-sulfide as ultra-fast/high sodium storage materials: The influences of morphology structure, phase evolution and interface property[J]. Energy Storage Materials,2019,16:267-280. doi: 10.1016/j.ensm.2018.06.006
    [38] Chen H, Mu J, Bian Y, et al. A bimetallic sulfide Co9S8/MoS2/C heterojunction in a three-dimensional carbon structure for increasing sodium ion storage[J]. New Carbon Materials,2023,38(3):510-521. doi: 10.1016/S1872-5805(23)60731-0
    [39] Wang L, Li J, Jin Y, et al. Study on the removal of chromium(iii) from leather waste by a two-step method[J]. Journal of Industrial and Engineering Chemistry,2019,79:172-180. doi: 10.1016/j.jiec.2019.06.030
    [40] Guo H, Ren Y Z, Sun X L, et al. Removal of Pb2+ from aqueous solutions by a high-efficiency resin[J]. Applied Surface Science,2013,283:660-667. doi: 10.1016/j.apsusc.2013.06.161
    [41] Zhou G T, Li Q G, Sun P, et al. Removal of impurities from scandium chloride solution using 732-type resin[J]. Journal of Rare Earths,2018,36(3):311-316. doi: 10.1016/j.jre.2017.09.009
    [42] Hu S Y, Zhang W C, Zheng M T, et al. Homogeneous triple-phase interfaces enabling one-pot route to metal compound/carbon composites[J]. Journal of Colloid and Interface Science,2021,599:271-279. doi: 10.1016/j.jcis.2021.04.054
    [43] Li H-M, Liu J-C, Zhu F-M, et al. Synthesis and physical properties of sulfonated syndiotactic polystyrene ionomers[J]. Polymer International,2001,50(4):421-428. doi: 10.1002/pi.646
    [44] Dizge N, Keskinler B, Barlas H. Sorption of Ni(ii) ions from aqueous solution by lewatit cation-exchange resin[J]. Journal of Hazardous Materials,2009,167(1-3):915-926. doi: 10.1016/j.jhazmat.2009.01.073
    [45] Hong T T, Okabe H, Hidaka Y, et al. Removal of metal ions from aqueous solutions using carboxymethyl cellulose/sodium styrene sulfonate gels prepared by radiation grafting[J]. Carbohydrate Polymers,2017,157:335-343. doi: 10.1016/j.carbpol.2016.09.049
    [46] Li X J, Zhou Z H, Zhao Y Z, et al. Copper-doped sulfonic acid-functionalized MIL-101(Cr) metal-organic framework for efficient aerobic oxidation reactions[J]. Applied Organometallic Chemistry,2020,34:13.
    [47] Ilanchezhiyan P, Kumar G M, Siva C, et al. Evidencing enhanced oxygen and hydrogen evolution reactions using In-Zn-Co ternary transition metal oxide nanostructures: A novel bifunctional electrocatalyst[J]. International Journal of Hydrogen Energy,2019,44(41):23081-23090. doi: 10.1016/j.ijhydene.2019.07.069
    [48] Fang G Z, Wang Q C, Zhou J, et al. Metal organic framework-templated synthesis of bimetallic selenides with rich phase boundaries for sodium-ion storage and oxygen evolution reaction[J]. ACS Nano,2019,13(5):5635-5645. doi: 10.1021/acsnano.9b00816
    [49] Li Y, Qian J, Zhang M H, et al. Co-construction of sulfur vacancies and heterojunctions in tungsten disulfide to induce fast electronic/ionic diffusion kinetics for sodium-ion batteries[J]. Advanced Materials,2020,32(47):2005802. doi: 10.1002/adma.202005802
  • -20230607Supporting Information.docx.pdf
  • 加载中
图(8)
计量
  • 文章访问数:  237
  • HTML全文浏览量:  71
  • PDF下载量:  94
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-19
  • 录用日期:  2023-08-29
  • 修回日期:  2023-08-28
  • 网络出版日期:  2023-10-16
  • 刊出日期:  2023-11-23

目录

    /

    返回文章
    返回