留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A 2D montmorillonite-carbon nanotube interconnected porous network that prevents polysulfide shuttling

ZHOU Ming-xia ZHOU Wen-hua LONG Xiang ZHU Shao-kuan Xu Peng OUYANG Quan-sheng SHI Bin SHAO Jiao-jing

周明霞, 周文华, 龙翔, 朱绍宽, 徐鹏, 欧阳全胜, 石斌, 邵姣婧. 二维蒙脱土-碳纳米管交联多孔网络中间层对多硫化物穿梭的抑制作用. 新型炭材料(中英文), 2023, 38(6): 1070-1079. doi: 10.1016/S1872-5805(23)60783-8
引用本文: 周明霞, 周文华, 龙翔, 朱绍宽, 徐鹏, 欧阳全胜, 石斌, 邵姣婧. 二维蒙脱土-碳纳米管交联多孔网络中间层对多硫化物穿梭的抑制作用. 新型炭材料(中英文), 2023, 38(6): 1070-1079. doi: 10.1016/S1872-5805(23)60783-8
ZHOU Ming-xia, ZHOU Wen-hua, LONG Xiang, ZHU Shao-kuan, Xu Peng, OUYANG Quan-sheng, SHI Bin, SHAO Jiao-jing. A 2D montmorillonite-carbon nanotube interconnected porous network that prevents polysulfide shuttling. New Carbon Mater., 2023, 38(6): 1070-1079. doi: 10.1016/S1872-5805(23)60783-8
Citation: ZHOU Ming-xia, ZHOU Wen-hua, LONG Xiang, ZHU Shao-kuan, Xu Peng, OUYANG Quan-sheng, SHI Bin, SHAO Jiao-jing. A 2D montmorillonite-carbon nanotube interconnected porous network that prevents polysulfide shuttling. New Carbon Mater., 2023, 38(6): 1070-1079. doi: 10.1016/S1872-5805(23)60783-8

二维蒙脱土-碳纳米管交联多孔网络中间层对多硫化物穿梭的抑制作用

doi: 10.1016/S1872-5805(23)60783-8
基金项目: 国家自然科学基金(51972070、52372185和52062004);贵州省高层次创新型人才(黔科合平台人才-GCC[2022]013-1);贵州省教育厅高校科技创新团队(黔教技[2023]054号);贵州省科技计划项目(黔科合基础[2020]1Z042;黔科合支撑[2021]一般317)和贵州大学培育项目(贵大培育[2019]01号)
详细信息
    通讯作者:

    邵姣婧,博士,教授. E-mail:xjshao@gzu.edu.cn

  • 中图分类号: TB332;TM53

A 2D montmorillonite-carbon nanotube interconnected porous network that prevents polysulfide shuttling

Funds: This work was supported by National Natural Science Foundation of China (51972070, 52372185 and 52062004), Guizhou Provincial High Level Innovative Talents Project (QKHPTRC-GCC[2022]013-1), Innovation Team for Advanced Electrochemical Energy Storage Devices and Key Materials of Guizhou Provincial Higher Education Institutions (QianJiaoJi[2023]054), Guizhou Provincial Science and Technology Projects (QKHJC[2020]1Z042, QKHZC[2021]YB317) and Cultivation Project of Guizhou University (GDPY[2019]01)
More Information
    Author Bio:

    周明霞与周文华为共同第一作者

    Corresponding author: SHAO Jiao-jing, Ph.D, Professor. E-mail:xjshao@gzu.edu.cn
  • 摘要: 将一维碳纳米管(CNT)和二维蒙脱土(MMT)纳米片复合并用于修饰商用聚丙烯(PP)隔膜。得益于碳纳米管的高电子导电性,以及MMT对多硫化物(LiPS)的强吸附能力和低的锂离子传输势垒,所得的交联多孔CNT-MMT复合阻挡层具有优异的结构稳定性和高的锂离子传输能力,表现出抑制LiPS穿梭的性能,因此实现了高硫利用率。结果表明,该复合阻挡层修饰的PP隔膜有效提升了锂硫电池的锂离子扩散系数、放电比容量和循环稳定性。所组装锂硫电池的0.1 C初始放电比容量为1373 mAh g−1,且具有良好的循环稳定性,在1 C下经500次循环后其每圈容量衰减率仅为0.062%。
  • FIG. 2779.  FIG. 2779.

    FIG. 2779..  FIG. 2779.

    Figure  1.  Characterization of 2D MMT. (a) AFM image and the corresponding height profile (inset), (b) SEM image and (c) SAED pattern of the MMT nanosheets. (d) XRD patterns and (e) FTIR spectra of the 2D MMT nanosheets and MMT lamellar crystals. (f) Zeta potential plot of the aqueous suspensions containing 2D MMT

    Figure  2.  (a) Photos of different samples soaked in a Li2S6/DOL/DME solution with different time, (b) O 1s spectra and (c) Li 1s XPS spectra of MMT before and after absorbing Li2S6. (d-f) Nucleation of the Li2S measurements of the cells based on various electrodes. (g) Potentiostatic charge profiles of the cells with MMT, CNT and CNT-MMT electrode. (h) Cross-section SEM image and (i) EDS mapping of the MMT-CNT

    Figure  3.  (a-d) SEM images of PP, PP-MMT, PP-CNT and PP-CNT-MMT. (e-h) The electrolyte contact angles on various separators. (i) High magnification SEM image of PP-CNT-MMT. (j) Digital photos of PP-CNT and PP-CNT-MMT before and after folding

    Figure  4.  (a-d) CV curves of the batteries with different separators at the scan rates of 0.1, 0.2, 0.3 and 0.4 mV s−1. (e) Lithium ion diffusion coefficient (DLi+) of the cells with PP, PP-MMT, PP-CNT and PP-CNT-MMT

    Figure  5.  (a) Nyquist plots, (b) galvanostatic charge/discharge profiles at 0.1 C and (c) rate performance of the Li-S battery with PP-CNT-MMT, PP-CNT, PP-MMT and PP, respectively. (d) CV curves for the 1st, 2nd and 3rd cycles of the cell with PP-CNT- MMT at a sweep rate of 0.1 mV s−1

    Figure  6.  The cycle performance of the batteries with PP-CNT-MMT, PP-MMT, PP-CNT and PP at (a) 0.2 C and (b) 0.5 C with sulfur loading of 1.0 mg cm−2. (c) The long-term cycling performance of these batteries at 1 C

  • [1] Armand M, Tarascon J M. Building better batteries[J]. Nature,2008,451(7179):652-657. doi: 10.1038/451652a
    [2] Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries[J]. Nature,2001,414(6861):359-367. doi: 10.1038/35104644
    [3] Xu K. A long journey of lithium: From the big bang to our smartphones[J]. Energy & Environmental Materials,2019,2(4):229-233.
    [4] Ji X, Lee K T, Nazar L F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries[J]. Nature Materials,2009,8(6):500-506. doi: 10.1038/nmat2460
    [5] Song Y, Long X, Luo Z, et al. Solid carbon spheres with interconnected open pore channels enabling high-efficient polysulfide conversion for high-rate lithium-sulfur batteries[J]. ACS Applied Materials & Interfaces,2022,14(28):32183-32195.
    [6] Li L B, Shan Y H. The use of graphene and its composites to suppress the shuttle effect in lithium-sulfur batteries[J]. New Carbon Materials,2021,36(2):336-349. doi: 10.1016/S1872-5805(21)60023-9
    [7] Liang X, Wen Z, Liu Y U, et al. Improved cycling performances of lithium sulfur batteries with LiNO3-modified electrolyte[J]. Journal of Power Sources,2011,196(22):9839-9843. doi: 10.1016/j.jpowsour.2011.08.027
    [8] Moon S, Jung Y H, Jung W K, et al. Encapsulated monoclinic sulfur for stable cycling of Li-S rechargeable batteries[J]. Advanced Materials,2013,25(45):6547-6553. doi: 10.1002/adma.201303166
    [9] Dong Z, Zhang J, Zhao X, et al. Sulfur@hollow polypyrrole sphere nanocomposites for rechargeable Li-S batteries[J]. Rsc Advances,2013,3(47):24914-24917. doi: 10.1039/c3ra45683h
    [10] Bing D, Shen L, Xu G, et al. Encapsulating sulfur into mesoporous TiO2 host as a high performance cathode for lithium-sulfur battery[J]. Electrochimica Acta,2013,107(10):78-84.
    [11] Dong Q, Shen R, Li C, et al. Construction of soft base tongs on separator to grasp polysulfides from shuttling in lithium-sulfur batteries[J]. Small,2018,14(52):e1804277. doi: 10.1002/smll.201804277
    [12] Du Z, Guo C, Wang L, et al. Atom-thick interlayer made of CVD-grown graphene film on separator for advanced lithium-sulfur batteries[J]. ACS Appl Mater Interfaces,2017,9(50):43696-43703. doi: 10.1021/acsami.7b14195
    [13] Xiao Z, Yang Z, Wang L, et al. A lightweight TiO2/graphene interlayer, applied as a highly effective polysulfide absorbent for fast, long-life lithium-sulfur batteries[J]. Advanced Materials,2015,27(18):2891-2898. doi: 10.1002/adma.201405637
    [14] Yao H, Yan K, Li W, et al. Improved lithium-sulfur batteries with a conductive coating on the separator to prevent the accumulation of inactive s-related species at the cathode-separator interface[J]. Energy Environmental Science,2014,7(10):3381-3390. doi: 10.1039/C4EE01377H
    [15] Long X, Zhu S K, Song Y, et al. Engineering the interface between separators and cathodes to suppress polysulfide shuttling in lithium-sulfur batteries[J]. New Carbon Materials,2022,37(3):527-543. doi: 10.1016/S1872-5805(22)60614-0
    [16] Yin F, Jin Q, Zhang X T, et al. Design of a 3D CNT/Ti3T2Tx aerogel-modified separator for Li–S batteries to eliminate both the shuttle effect and slow redox kinetics of polysulfides[J]. New Carbon Materials,2022,37(4):724-733. doi: 10.1016/S1872-5805(21)60085-9
    [17] Shao Z T, Wu L L, Yang Y, et al. Carbon nanotube-supported MoSe2 nanoflakes as an interlayer for lithium-sulfur batteries[J]. New Carbon Materials,2021,36(1):219-226. doi: 10.1016/S1872-5805(21)60015-X
    [18] Sun Z, Guo Y, Li B, et al. ZnO/carbon nanotube/reduced graphene oxide composite film as an effective interlayer for lithium/sulfur batteries[J]. Solid State Sciences,2019,95:105924. doi: 10.1016/j.solidstatesciences.2019.06.013
    [19] Yuan H, Peng H J, Li B Q, et al. Conductive and catalytic triple-phase interfaces enabling uniform nucleation in high-rate lithium-sulfur batteries[J]. Advanced Energy Materials,2019,9(1):1802768. doi: 10.1002/aenm.201802768
    [20] Kaisar N, Abbas S A, Ding J, et al. A lithium passivated MoO3 nanobelt decorated polypropylene separator for fast-charging long-life Li-S batteries[J]. Nanoscale,2019,11(6):2892-2900. doi: 10.1039/C8NR08262F
    [21] Wu X, Fan L, Qiu Y, et al. Ion-selective prussian-blue-modified celgard separator for high-performance lithium-sulfur battery[J]. ChemSusChem,2018,11(18):3345-3351. doi: 10.1002/cssc.201800871
    [22] Kehal M, Reinert L, Maurin D, et al. The trapping of B from water by exfoliated and functionalized vermiculite[J]. Clays and Clay Minerals,2008,56(4):453-460. doi: 10.1346/CCMN.2008.0560406
    [23] Gamba M, Kovář P, Pospíšil M, et al. Insight into thiabendazole interaction with montmorillonite and organically modified montmorillonites[J]. Applied Clay Science,2017,137:59-68. doi: 10.1016/j.clay.2016.12.001
    [24] Pei F, Lin L, Fu A, et al. A two-dimensional porous carbon-modified separator for high-energy-density Li-S batteries[J]. Joule,2018,2(2):323-336. doi: 10.1016/j.joule.2017.12.003
    [25] Liao Y, Yuan L, Liu X, et al. Low-cost fumed silicon dioxide uniform Li+ flux for lean-electrolyte and anode-free Li/S battery[J]. Energy Storage Materials,2022,48:366-374. doi: 10.1016/j.ensm.2022.03.035
    [26] Ghadami A, Taheri Qazvini N, Nikfarjam N. Ionic conductivity in gelatin-based hybrid solid electrolytes: The non-trivial role of nanoclay[J]. Journal of Materials Science & Technology,2014,30(11):1096-1102.
    [27] Long X, Luo Z H, Zhou W H, et al. Two-dimensional montmorillonite-based heterostructure for high-rate and long-life lithium-sulfur batteries[J]. Energy Storage Materials,2022,52:120-129. doi: 10.1016/j.ensm.2022.07.041
    [28] Li W Y, Luo Z H, Long X, et al. Cation vacancy-boosted lewis acid-base interactions in a polymer electrolyte for high-performance lithium metal batteries[J]. ACS Applied Materials & Interfaces,2021,13(43):51107-51116. doi: 10.1021/acsami.1c17002
    [29] Peng X, Wang T, Liu B, et al. A solvent molecule reconstruction strategy enabling a high-voltage ether-based electrolyte[J]. Energy & Environmental Science,2022,15(12):5350-5361.
    [30] Zhang T, Wang W, Zhao Y, et al. Removal of heavy metals and dyes by clay-based adsorbents: From natural clays to 1D and 2D nano-composites[J]. Chemical Engineering Journal,2021,420:127574. doi: 10.1016/j.cej.2020.127574
    [31] Liu M L, Huang M, Tian L Y, et al. Two-dimensional nanochannel arrays based on flexible montmorillonite membranes[J]. ACS Applied Materials & Interfaces,2018,10(51):44915-44923.
    [32] Lan Y, Liu Y, Li J, et al. Natural clay-based materials for energy storage and conversion applications[J]. Advanced Science,2021,8(11):e2004036. doi: 10.1002/advs.202004036
    [33] SHAO Jiao-jing, ZHENG De-yi, Li Zheng-jie, et al. Top-down fabrication of two-dimensional nanomaterials: Controllable liquid phase exfoliation[J]. New Carbon Materials,2016,31(02):97-114.
    [34] Chen W, Lei T, Lv W, et al. Atomic interlamellar ion path in high sulfur content lithium-montmorillonite host enables high-rate and stable lithium-sulfur battery [J]. Advanced Materials. 2018, e1804084
    [35] Wang W, Yang Y, Luo H, et al. Design of advanced separators for high performance Li-S batteries using natural minerals with 1D to 3D microstructures[J]. Journal of Colloid and Interface Science,2022,614:593-602. doi: 10.1016/j.jcis.2022.01.148
  • 加载中
图(7)
计量
  • 文章访问数:  131
  • HTML全文浏览量:  44
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-21
  • 修回日期:  2023-09-23
  • 网络出版日期:  2023-10-20
  • 刊出日期:  2023-11-23

目录

    /

    返回文章
    返回