留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Sulfonyl chloride-intensified metal chloride intercalation towards graphite for efficient sodium storage

LAN Shu-qin REN Wei-cheng WANG Zhao YU Chang YU Jin-he LIU Ying-bin XIE Yuan-yang ZHANG Xiu-bo WANG Jian-jian QIU Jie-shan

兰淑琴, 任伟成, 王钊, 于畅, 余金河, 刘迎宾, 谢远洋, 张秀波, 王健健, 邱介山. 磺酰氯促进金属氯化物插层石墨以实现高效钠存储. 新型炭材料(中英文). doi: 10.1016/S1872-5805(24)60851-6
引用本文: 兰淑琴, 任伟成, 王钊, 于畅, 余金河, 刘迎宾, 谢远洋, 张秀波, 王健健, 邱介山. 磺酰氯促进金属氯化物插层石墨以实现高效钠存储. 新型炭材料(中英文). doi: 10.1016/S1872-5805(24)60851-6
LAN Shu-qin, REN Wei-cheng, WANG Zhao, YU Chang, YU Jin-he, LIU Ying-bin, XIE Yuan-yang, ZHANG Xiu-bo, WANG Jian-jian, QIU Jie-shan. Sulfonyl chloride-intensified metal chloride intercalation towards graphite for efficient sodium storage. New Carbon Mater.. doi: 10.1016/S1872-5805(24)60851-6
Citation: LAN Shu-qin, REN Wei-cheng, WANG Zhao, YU Chang, YU Jin-he, LIU Ying-bin, XIE Yuan-yang, ZHANG Xiu-bo, WANG Jian-jian, QIU Jie-shan. Sulfonyl chloride-intensified metal chloride intercalation towards graphite for efficient sodium storage. New Carbon Mater.. doi: 10.1016/S1872-5805(24)60851-6

磺酰氯促进金属氯化物插层石墨以实现高效钠存储

doi: 10.1016/S1872-5805(24)60851-6
详细信息
    通讯作者:

    王 钊. E-mail:wangzhao3709@sdau.edu.cn

    于 畅. E-mail:chang.yu@dlut.edu.cn

    邱介山. E-mail:qiujs@mail.buct.edu.cn

  • 中图分类号: TQ152

Sulfonyl chloride-intensified metal chloride intercalation towards graphite for efficient sodium storage

Funds: This work was partly supported by the National Key Research and Development Program of China (2022YFB4101600), the Fundamental Research Funds for the Central Universities (DUT22ZD207, DUT22LAB612), and the Shandong Provincial Natural Science Foundation (ZR2023QB095)
More Information
  • 摘要: 金属氯化物-石墨插层化合物具有导电性优异,石墨层间距大等特点,可用作钠离子电池负极材料。然而,在传统金属氯化物插层石墨过程中,不可避免的用到氯气,既增加了实验操作的风险,也对实验设备提出更高要求。基于上述原因,本文创新性地使用SO2Cl2作为氯源来促进BiCl3插层石墨。该方法不仅有效提高了BiCl3插层效率,也避免了直接使用氯气带来的安全性风险。采用该方法所合成的三氯化铋-石墨插层化合物(BiCl3-GICs)的层间距为1.26 nm,BiCl3插层含量高达42%。以其为负极材料,组装的钠离子电池具有高的比容量(213 mAh g1 at 1 A g1)和优异的倍率性能(170 mAh g1 at 5 A g1)。此外,原位拉曼光谱表明,首圈放电后石墨与插层的BiCl3相互作用减弱,该过程有效促进了钠离子在石墨层内的存储。采用该方法可成功制备多种类型金属氯化物-石墨插层化合物,为开发高性能储能材料提供了可行思路。
  • Figure  1.  Schematic diagram for the formation of BiCl3-GICs

    Figure  2.  (a) XRD patterns and (b) TGA curves of the BiCl3-GICs samples fabricated at various temperatures (reaction time: 10 h). (c) XRD patterns and (d) TGA curves of the BiCl3-GICs samples prepared at various reaction time (reaction temperature: 200 °C). (e) Raman spectra, and (f) FT-IR spectra of graphite and the BiCl3-GICs

    Figure  3.  (a) The full XPS survey spectrum of BiCl3-GICs. (b) High-resolution XPS profiles of (b) C 1s, (c) Bi 4f, and (d) Cl 2p in BiCl3-GICs, respectively

    Figure  4.  SEM images of (a-b) graphite and (c-d) BiCl3-GICs. (e-f) TEM images of BiCl3-GICs. (g) The matching mapping images of the elements C, Cl and Bi

    Figure  5.  (a) Raman spectra and (b) XRD patterns of WCl6-GICs, MoCl5-GICs, and graphite. The elemental mapping images of (c) the C, W and Cl elements in the WCl6-GICs and (d) the C, Mo and Cl elements in the MoCl5-GICs. Cycling test for (e) WCl6-GICs and (f) MoCl5-GICs at 1 A g−1

    Figure  6.  (a) Cycling performance of BiCl3-GICs and graphite at 1 A g−1. (b) CV curves and (c) GCD curves of graphite and BiCl3-GICs for the first cycle. (d) The CV curves and (e) GCD curves of BiCl3-GICs for the first three cycles. (f) EIS curves of BiCl3-GICs and graphite

    Figure  7.  (a-b) Rate performance of BiCl3-GICs. (c) Comparison of rate performance between this work and the reported SIB anodes. (d) CV curves of BiCl3-GICs at various scan rates. (e) The calculated logarithm connection between scan rate and current based on the CV curves. (f) b-values of different redox peaks

    Figure  8.  The CV curve for the first charge/discharge process, the in-situ Raman mapping and the Raman spectra of BiCl3-GICs electrode

  • [1] Li Y, Zhou Q, Weng S, et al. Interfacial engineering to achieve an energy density of over 200 Wh kg−1 in sodium batteries[J]. Nature Energy,2022,7(6):511-519. doi: 10.1038/s41560-022-01033-6
    [2] Tang Z, Zhang R, Wang H, et al. Revealing the closed pore formation of waste wood-derived hard carbon for advanced sodium-ion battery[J]. Nature Communications,2023,14(1):6024. doi: 10.1038/s41467-023-39637-5
    [3] Yu J, Ren W, Yu C, et al. Enhanced anion-derived inorganic-dominated solid electrolyte interphases for high-rate and stable sodium storage[J]. Energy & Environmental Materials,2023,6(4):e12602.
    [4] Li S, Qian G, He X, et al. Thermal-healing of lattice defects for high-energy single-crystalline battery cathodes[J]. Nature Communications,2022,13(1):704.
    [5] Yang F, Gao H, Chen J, et al. Phosphorus-based materials as the anode for sodium-ion batteries[J]. Small Methods,2017,1(11):1700216.
    [6] Fang S, Bresser D, Passerini S. Transition metal oxide anodes for electrochemical energy storage in lithium- and sodium-ion batteries[J]. Advanced Energy Materials,2020,10(1):1902485.
    [7] Guo H, Li Y, Wang C, et al. Effect of the air oxidation stabilization of pitch on the microstructure and sodium storage of hard carbons[J]. New Carbon Materials,2021,36(6):1073-1078. doi: 10.1016/S1872-5805(21)60075-6
    [8] Huang S, Qiu X, Wang C, et al. Biomass-derived carbon anodes for sodium-ion batteries[J]. New Carbon Materials,2023,38(1):40-66.
    [9] Hou Z, Gao Y, Zhang Y, et al. Research progress on freestanding carbon-based anodes for sodium energy storage[J]. New Carbon Materials,2023,38(2):230-243. doi: 10.1016/S1872-5805(23)60725-5
    [10] Li X, Wang X, Sun J. Recent progress in the carbon-based frameworks for high specific capacity anodes/cathode in lithium/sodium ion batteries[J]. New Carbon Materials,2021,36(1):106-116.
    [11] Wang Z, Yu C, Huang H, et al. Carbon-enabled microwave chemistry: from interaction mechanisms to nanomaterial manufacturing[J]. Nano Energy,2021,85:106027.
    [12] Wang Z, Yu C, Zhao C, et al. Interface inversion: a promising strategy to configure ultrafine nanoparticles over graphene for fast sodium storage[J]. Small,2021,17(1):2005119.
    [13] Xiao J, Han J, Zhang C, et al. Dimensionality, function and performance of carbon materials in energy storage devices[J]. Advanced Energy Materials,2022,12(4):2100775.
    [14] Zhao C, Yu C, Qiu B, et al. Ultrahigh rate and long-life sodium-ion batteries enabled by engineered surface and near-surface reactions[J]. Advanced Materials,2018,30(7):1702486.
    [15] Zhao C, Yu C, Zhang M, et al. Ultrafine MoO2-carbon microstructures enable ultralong-life power-type sodium ion storage by enhanced pseudocapacitance[J]. Advanced Energy Materials,2017,7(15):1602880.
    [16] Li X, Li J, Ma L, et al. Graphite anode for potassium ion batteries: current status and perspective[J]. Energy & Environmental Materials,2022,5(2):458-469.
    [17] Xu Z, Yoon G, Park K, et al. Tailoring sodium intercalation in graphite for high energy and power sodium ion batteries[J]. Nature Communications,2019,10(1):2598.
    [18] Huang S, Qiu X, Wang C, et al. Biomass-derived carbon anodes for sodium-ion batteries[J]. New Carbon Materials,2023,38(1):40-66.
    [19] Wang Z, Yu C, Huang H, et al. Energy accumulation enabling fast synthesis of intercalated graphite and operando decoupling for lithium storage[J]. Advanced Functional Materials,2021,31(15):2009801.
    [20] Wang F, Yi J, Wang Y, et al. Graphite intercalation compounds (GICs): A new type of promising anode material for lithium-ion batteries[J]. Advanced Energy Materials,2014,4(2):1300600.
    [21] Li Z, Zhang C, Han F, et al. Towards high-volumetric performance of Na/Li-ion batteries: A better anode material with molybdenum pentachloride-graphite intercalation compounds (MoCl5-GICs)[J]. Journal of Materials Chemistry A,2020,8(5):2430-2438.
    [22] Li Z, Tian Z, Zhang C, et al. An AlCl3 coordinating interlayer spacing in microcrystalline graphite facilitates ultra-stable and high-performance sodium storage[J]. Nanoscale,2021,13(23):10468-10477.
    [23] Dresselhaus M S, Dresselhaus G. Intercalation compounds of graphite[J]. Advances in physics,2002,51(1):1-186.
    [24] Metz W, Shamsrizi M. Investigations of the nucleation process of metal chloride-graphite intercalation compounds[J]. Synthetic Metals,1989(34):85-89.
    [25] Stumpp E, Niess R. Graphit einlagerungsverbindungen mit thallium(III) chlorid[J]. Carbon,1978,16(4):259-264.
    [26] Wang Q, Hui J, Huang Y, et al. The preparation of BiOCl photocatalyst and its performance of photodegradation on dyes[J]. Materials Science in Semiconductor Processing,2014,17:87-93.
    [27] Seiler S, Halbig C E, Grote F, et al. Effect of friction on oxidative graphite intercalation and high-quality graphene formation[J]. Nature Communications,2018,9(1):836.
    [28] Xie Z, Zhu Z, Liu Z, et al. Rechargeable hydrogen-chlorine battery operates in a wide temperature range[J]. Journal of the American Chemical Society,2023,145(46):25422-25430.
    [29] Cao R, Zhang M, Jiao Y, et al. Co-upcycling of polyvinyl chloride and polyesters[J]. Nature Sustainability,2023,6(12):1685-1692.
    [30] Li T, Li M, Li H, et al. High-voltage and long-lasting aqueous chlorine-ion battery by virtue of “water-in-salt” electrolyte[J]. iScience,2021,24(1):101976.
    [31] Shi L, Si W, Wang F, et al. Construction of 2D/2D layered g-C3N4/Bi12O17Cl2 hybrid material with matched energy band structure and its improved photocatalytic performance[J]. RSC Advances,2018,8(43):24500-24508.
    [32] Raccichini R, Varzi A, Wei D, et al. Critical insight into the relentless progression toward graphene and graphene-containing materials for lithium-ion battery anodes[J]. Advanced Materials,2017,29(11):1603421.
    [33] Jache B, Adelhelm P. Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of co-intercalation phenomena[J]. Angewandte Chemie International Edition,2014,53(38):10169-10173.
    [34] Chen J, Fan X, Ji X, et al. Intercalation of Bi nanoparticles into graphite results in an ultra-fast and ultra-stable anode material for sodium-ion batteries[J]. Energy & Environmental Science,2018,11(5):1218-1225.
    [35] Wang C, Wang L, Li F, et al. Bulk bismuth as a high-capacity and ultralong cycle-life anode for sodium-ion batteries by coupling with glyme-based electrolytes[J]. Advanced Materials,2017,29(35):1702212.
    [36] Lei L, Sun K, Hongwei Z, et al. Large scale preparation of Na3V2(PO4)2F3 with cross-linked double carbon network for high energy density sodium ion batteries at −20 °C[J]. Journal of Energy Storage,2024,78:109923.
    [37] Dong X, Chen L, Liu J, et al. Environmentally-friendly aqueous Li (or Na)-ion battery with fast electrode kinetics and super-long life[J]. Science Advances,2016,2(1):e1501038.
    [38] Wang J, Song X, Yu C, et al. A ferricyanide anion-philic interface induced by boron species within carbon ramework for efficient charge storage in supercapacitors[J]. ACS Applied Materials & Interfaces,2024,16(10):12916-12923.
    [39] Zhao W, Tan P H, Liu J, et al. Intercalation of few-layer graphite flakes with FeCl3: Raman determination of fermi level, layer by layer decoupling, and stability[J]. Journal of the American Chemical Society,2011,133(15):5941-5946.
  • 加载中
图(8)
计量
  • 文章访问数:  37
  • HTML全文浏览量:  12
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-18
  • 录用日期:  2024-04-01
  • 修回日期:  2024-03-29
  • 网络出版日期:  2024-04-08

目录

    /

    返回文章
    返回