留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

环氧氯丙烷对淀粉热解行为的影响及其交联机理

李茂群 陈成猛 孙国华 谢莉婧

李茂群, 陈成猛, 孙国华, 谢莉婧. 环氧氯丙烷对淀粉热解行为的影响及其交联机理. 新型炭材料, 2020, 35(4): 452-458. doi: 10.19869/j.ncm.1007-8827.20190038
引用本文: 李茂群, 陈成猛, 孙国华, 谢莉婧. 环氧氯丙烷对淀粉热解行为的影响及其交联机理. 新型炭材料, 2020, 35(4): 452-458. doi: 10.19869/j.ncm.1007-8827.20190038
LI Mao-qun, CHEN Cheng-meng, SUN Guo-hua, XIE Li-jing. Effect of the epichlorohydrin grafting of starch on its pyrolysis behavior and mechanism. New Carbon Mater., 2020, 35(4): 452-458. doi: 10.19869/j.ncm.1007-8827.20190038
Citation: LI Mao-qun, CHEN Cheng-meng, SUN Guo-hua, XIE Li-jing. Effect of the epichlorohydrin grafting of starch on its pyrolysis behavior and mechanism. New Carbon Mater., 2020, 35(4): 452-458. doi: 10.19869/j.ncm.1007-8827.20190038

环氧氯丙烷对淀粉热解行为的影响及其交联机理

doi: 10.19869/j.ncm.1007-8827.20190038
基金项目: 中国科学院洁净能源创新研究院合作基金项目资助(DNL180308);山西省重大专项(MC2016-08);山西省重大专项(MC2016-04).
详细信息
    作者简介:

    李茂群,硕士.E-mail:15611565528@163.com

    通讯作者:

    陈成猛,研究员.E-mail:ccm@sxicc.ac.cn;孙国华,副研究员.E-mail:sunguohua_1@sxicc.ac.cn

  • 中图分类号: TQ127.1+1

Effect of the epichlorohydrin grafting of starch on its pyrolysis behavior and mechanism

Funds: DNL Cooperation Fund, CAS (DNL180308), Scientific and Technological Key Project of Shanxi Province (MC2016-08), Scientific and Technological Key Project of Shanxi Province (MC2016-04).
  • 摘要: 首先制备了环氧氯丙烷交联的玉米淀粉,然后经稳定化和炭化得到淀粉基类球形炭材料。通过TG-MS分析玉米淀粉在环氧氯丙烷影响下的热解行为;采用扫描电镜(SEM)、X射线粉末衍射仪(XRD)对淀粉基类球形炭材料的微观形貌和晶型结构进行表征;利用原位红外(in situ FTIR)对淀粉热解过程中表面化学演化进行表征;最后,通过以上表征及分析探究环氧氯丙烷对淀粉热解行为的影响并深入探究了环氧氯丙烷与淀粉的交联反应机理。结果表明,淀粉交联环氧氯丙烷后,热稳定性得到有效提高,最大热失重温度提前,热解过程相对温和,避免淀粉在剧烈反应时基本骨架结构遭到破坏和炭收率显著降低,同时,交联淀粉在后续的热解过程中更趋向于向芳香族结构转化,在相同温度下比纯淀粉热解产物炭化程度高,得到的最终产物炭收率高;环氧氯丙烷与淀粉在热解过程中与淀粉发生交联反应,形成稳定的网状结构稳定淀粉炭骨架从而减少淀粉中挥发性小分子物质的产生。
  • Sun L, Tian C, Li M, et al. From coconut shell to porous graphene-like nanosheets for high-power supercapacitors[J]. Journal of Materials Chemistry A, 2013, 1:6462.
    Hulicova-Jurcakova D, Seredych M, Lu G Q, et al. Combined effect of nitrogen-and oxygen-containing functional groups of microporous activated carbon on its electrochemical performance in supercapacitors[J]. Advanced Functional Materials, 2009, 19:438-447.
    Deng J, Xiong T, Xu F, et al. Inspired by bread leavening:One-pot synthesis of hierarchically porous carbon for supercapacitors[J]. Green Chemistry, 2015, 17:4053-4060.
    Raymundo-Piñero E, Leroux F, Béguin F. A high-performance carbon for supercapacitors obtained by carbonization of a seaweed biopolymer[J]. Advanced Materials, 2006, 18:1877-1882.
    Kang D, Liu Q, Gu J, et al. "Egg-box"-assisted fabrication of porous carbon with small mesopores for high-rate electric double layer capacitors[J]. Acs Nano, 2015, 9:11225-11233.
    Xu G, Han J, Ding B, et al. Biomass-derived porous carbon materials with sulfur and nitrogen dual-doping for energy storage[J]. Green Chemistry, 2015, 17:1668-1674.
    Acar F N, Malkoc E. The removal of chromium(VI) from aqueous solutions by Fagus orientalis L[J]. Bioresour Technol, 2004, 94:13-15.
    Li P Z, Zhao Y. Nitrogen-rich porous adsorbents for CO2 capture and storage[J]. Chem Asian J, 2013, 8:1680-1691.
    Li Y, Zhang Q, Zhang J, et al. A top-down approach for fabricating free-standing bio-carbon supercapacitor electrodes with a hierarchical structure[J]. Scientific Reports, 2015, 5.
    Sharma R K, Hajaligol M R, Smith P A M, et al. Characterization of char from pyrolysis of chlorogenic acid[J]. Energy & Fuels, 2000, 14:1083-1093.
    Chen T, Zhu L, Liu X, et al. Synthesis and antioxidant activity of phosphorylated polysaccharide from Portulaca oleracea L. with H3PW12O40 immobilized on polyamine functionalized polystyrene bead as catalyst[J]. Journal of Molecular Catalysis a-Chemical, 2011, 342:74-82.
    Cao Y F, Xie L J, Sun G H, et al. Hollow carbon microtubes from kapok fiber:Structural evolution and energy storage performance[J]. Sustainable Energy & Fuels, 2018, 2:455-465.
    Chen Y, Yan Q, Zhang S, et al. Buffering agents-assisted synthesis of nitrogen-doped graphene with oxygen-rich functional groups for enhanced electrochemical performance[J]. Journal of Power Sources, 2016, 333:125-133.
    Zhao S, Wang C Y, Chen M M, et al. Mechanism for the preparation of carbon spheres from potato starch treated by NH4Cl[J]. Carbon, 2009, 47:331-333.
    Zhao S, Guo Q, Xian X, et al. Improved specific capacity of sulfur/starch-based activated carbon spheres composites by polyaniline-based carbon encapsulation strategy[J]. Journal of Applied Polymer Science, 2018, 135:46544.
    Zanetti M, Anceschi A, Magnacca G, et al. Micro porous carbon spheres from cyclodextrin nanosponges[J]. Microporous and Mesoporous Materials, 2016, 235:178-184.
    Liao L, Yue H, Cui Y. Crosslink polymerization kinetics and mechanism of hydrogels composed of acrylic acid and 2-Acrylamido-2-methylpropane sulfonic acid[J]. Chinese Journal of Chemical Engineering, 2011, 19:285-291.
    Oshima A, Seguchi T, Tabata Y. Radiation-induced free radicals and their behaviour in crosslinked polytetrafluoroethylene (PTFE)[J]. Polymer International, 1999, 48:996-1003.
    Link S, Arvelakis S, Spliethoff H, et al. Investigation of biomasses and chars obtained from pyrolysis of different biomasses with solid-state C-13 and Na-23 nuclear magnetic resonance spectroscopy[J]. Energy & Fuels, 2008, 22:3523-3530.
    Hay J N, Kemmish D J. Thermal-decomposition of poly(Aryl Ether Ketones)[J]. Polymer, 1987, 28:2047-2051.
    Sevilla M, Fuertes A B. Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides[J]. Chemistry, 2009, 15:4195-203.
    Flores-Morales A, Jimenez-Estrada M, Mora-Escobedo R. Determination of the structural changes by FT-IR, Raman, and CP/MAS C-13 NMR spectroscopy on retrograded starch of maize tortillas[J]. Carbohydrate Polymers, 2012, 87:61-68.
    Lian X, Wang C, Zhang K, et al. The retrogradation properties of glutinous rice and buckwheat starches as observed with FT-IR, C-13 NMR and DSC[J]. International Journal of Biological Macromolecules, 2014, 64:288-293.
    Link S, Arvelakis S, Spliethoff H, et al. Investigation of biomasses and chars obtained from pyrolysis of different biomasses with solid-state C-13 and Na-23 nuclear magnetic resonance spectroscopy[J]. Energy & Fuels, 2008, 22:3523-3530.
    Zhang X Q, Golding J, Burgar I. Thermal decomposition chemistry of starch studied by C-13 high-resolution solid-state NMR spectroscopy[J]. Polymer, 2002, 43:5791-5796.
    Yu L, Falco C, Weber J, et al. Carbohydrate-derived hydrothermal carbons:A thorough characterization study[J]. Langmuir, 2012, 28:12373-12383.
    Cao J, Zhu C, Aoki Y, Habazaki H, et al. Starch-derived hierarchical porous carbon with controlled porosity for high performance supercapacitors[J], ACS Sustainable Chemistry & Engineering, 2018, 6:7292-7303.
  • 加载中
图(1)
计量
  • 文章访问数:  789
  • HTML全文浏览量:  260
  • PDF下载量:  197
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-20
  • 修回日期:  2020-06-20
  • 刊出日期:  2020-08-28

目录

    /

    返回文章
    返回