留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金属催化轴向解链法制备窄石墨烯纳米带

王锴 周庆萍 陈志刚 陈由馨 贺志岩 江圣昊 陈杰 陈长鑫

王锴, 周庆萍, 陈志刚, 陈由馨, 贺志岩, 江圣昊, 陈杰, 陈长鑫. 金属催化轴向解链法制备窄石墨烯纳米带. 新型炭材料, 2020, 35(6): 716-721. doi: 10.19869/j.ncm.1007-8827.20200012
引用本文: 王锴, 周庆萍, 陈志刚, 陈由馨, 贺志岩, 江圣昊, 陈杰, 陈长鑫. 金属催化轴向解链法制备窄石墨烯纳米带. 新型炭材料, 2020, 35(6): 716-721. doi: 10.19869/j.ncm.1007-8827.20200012
WANG Kai, ZHOU Qing-ping, CHEN Zhi-gang, CHEN You-xin, HE Zhi-yan, JIANG Sheng-hao, CHEN Jie, CHEN Chang-xin. Synthesis of narrow graphene nanoribbons by a metal-catalyzed axial unzipping method. New Carbon Mater., 2020, 35(6): 716-721. doi: 10.19869/j.ncm.1007-8827.20200012
Citation: WANG Kai, ZHOU Qing-ping, CHEN Zhi-gang, CHEN You-xin, HE Zhi-yan, JIANG Sheng-hao, CHEN Jie, CHEN Chang-xin. Synthesis of narrow graphene nanoribbons by a metal-catalyzed axial unzipping method. New Carbon Mater., 2020, 35(6): 716-721. doi: 10.19869/j.ncm.1007-8827.20200012

金属催化轴向解链法制备窄石墨烯纳米带

doi: 10.19869/j.ncm.1007-8827.20200012
基金项目: 国家自然科学基金优秀青年科学基金(61622404);教育部长江学者奖励计划青年学者项目(Q2017081);国家自然科学基金面上项目(62074098);上海市"科技创新行动计划"国际合作项目(15520720200).
详细信息
    通讯作者:

    陈长鑫,教授.博士.E-mail:chen.c.x@sjtu.edu.cn

  • 中图分类号: TQ127.1+1

Synthesis of narrow graphene nanoribbons by a metal-catalyzed axial unzipping method

Funds: National Natural Science Foundation of China for Excellent Young Scholars (61622404); Chang Jiang (Cheung Kong) Scholars Program of the Ministry of Education of China (Q2017081);National Natural Science Foundation of China (62074098);Science and Technology Innovation Action Program from the Science and Technology Commission of Shanghai Municipality (15520720200).
  • 摘要: 窄石墨烯纳米带(GNR)因具有较大带隙使其在电子和光电器件中有广阔的应用前景。然而目前仍缺乏良好的方法来制备高质量、窄GNR。本文研发了一种过渡金属轴向解链单壁碳纳米管(SWCNT)制备窄的高质量GNR和GNR/SWCNT分子内异质结的方法。通过研究,获得了该方法解链SWCNT的最佳工艺,通过控制H2流量能调节SWCNT的解链速率。窄GNR和GNR/SWCNT分子内异质结有望被用于下一代电子和光电器件。
  • Schwierz F. Graphene transistors[J]. Nature nanotechnology, 2010, 5(7):487.
    Geim A K, Novoselov K S. The rise of graphene[M]//Nanoscience and Technology:A Collection of Reviews from Nature Journals. 2010:11-19.
    Wakabayashi K, Fujita M, Ajiki H, et al. Electronic and magnetic properties of nanographite ribbons[J]. Physical Review B, 1999, 59(12):8271-8282.
    Li X, Wang X, Zhang L, et al. Chemically derived, ultrasmooth graphene nanoribbon semiconductors[J]. Science, 2008, 319(5867):1229-1232.
    Son Y, Cohen M L, Louie S G, et al. Energy gaps in graphene nanoribbons[J]. Physical Review Letters, 2006, 97(21):216803-216803.
    Wang X, Ouyang Y, Li X, et al. Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors[J]. Physical review letters, 2008, 100(20):206803-206803.
    Yan Q, Huang B, Yu J, et al. Intrinsic current-voltage characteristics of graphene nanoribbon transistors and effect of edge doping[J]. Nano Letters, 2007, 7(6):1469-1473.
    Wang X, Dai H. Etching and narrowing of graphene from the edges[J]. Nature Chemistry, 2010, 2(8):661-665.
    Bai J, Duan X, Huang Y. Rational fabrication of graphene nanoribbons using a nanowire etch mask[J]. Nano Letters, 2009, 9(5):2083-2087.
    Jacobberger R M, Kiraly B, Fortin-Deschenes M, et al. Direct oriented growth of armchair graphene nanoribbons on germanium[J]. Nature Communications, 2015, 6(1):1-8.
    Cai J, Ruffieux P, Jaafar R, et al. Atomically precise bottom-up fabrication of graphene nanoribbons[J]. Nature, 2010, 466(7305):470-473.
    Ribeiro R, Poumirol J M, Cresti A, et al. Unveiling the magnetic structure of graphene nanoribbons[J]. Physical Review Letters, 2011, 107(8):6801-6807.
    Sun K, Ji P, Zhang J, et al. On-Surface Synthesis of 8-and 10-armchair graphene nanoribbons[J]. Small, 2019, 15(15):1804526-1804526.
    Zhang H, Lin H, Sun K, et al. On-surface synthesis of rylene-type graphene nanoribbons[J]. Journal of the American Chemical Society, 2015, 137(12):4022-4025.
    Kosynkin D V, Higginbotham A L, Sinitskii A, et al. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons[J]. Nature, 2009, 458(7240):872-876.
    Jiao L, Wang X, Diankov G, et al. Facile synthesis of high-quality graphene nanoribbons[J]. Nature Nanotechnology, 2010, 5(5):321-325.
    Lim J, Maiti U N, Kim N Y, et al. Dopant-specific unzipping of carbon nanotubes for intact crystalline graphene nanostructures[J]. Nature Communications, 2016, 7(1):10364-10364.
    Wang J, Ma L, Yuan Q, et al. Transition-metal-catalyzed unzipping of single-walled carbon nanotubes into narrow graphene nanoribbons at low temperature[J]. Angewandte Chemie International Edition, 2011, 50(35):8041-8045.
    Ma L, Zeng X C. Unravelling the role of topological defects on catalytic unzipping of sngle-walled carbon nanotubes by single transition metal atom[J]. The Journal of Physical Chemistry Letters, 2018, 9(23):6801-6807.
    Wei D, Xie L, Lee K K, et al. Controllable unzipping for intramolecular junctions of graphene nanoribbons and single-walled carbon nanotubes[J]. Nature Communications, 2013, 4:1374.
    Tao C, Jiao L, Yazyev O V, et al. Spatially resolving edge states of chiral graphene nanoribbons[J]. Nature Physics, 2011, 7(8):616-620.
    Parashar U K, Bhandari S, Srivastava R K, et al. Single step synthesis of graphene nanoribbons by catalyst particle size dependent cutting of multiwalled carbon nanotubes[J]. Nanoscale, 2011, 3(9):3876-3882.
    Datta S S, Strachan D R, Khamis S M, et al. Crystallographic etching of few-layer graphene[J]. Nano Letters, 2008, 8(7):1912-1915.
    Elias A L, Botellomendez A R, Menesesrodriguez D, et al. Longitudinal cutting of pure and doped carbon nanotubes to form graphitic nanoribbons using metal clusters as nanoscalpels[J]. Nano Letters, 2010, 10(2):366-372.
    Dresselhaus M S, Dresselhaus G, Saito R, et al. Raman spectroscopy of carbon nanotubes[J]. Physics Reports, 2005, 409(2):47-99.
    Cancado L G, Pimenta M A, Neves B R, et al. Influence of the atomic structure on the raman spectra of graphite edges[J]. Physical Review Letters, 2004, 93(24):247401-247401.
    Casiraghi C, Hartschuh A, Qian H, et al. Raman spectroscopy of graphene edges[J]. Nano Letters, 2009, 9(4):1433-1441.
    Jiao L, Zhang L, Ding L, et al. Aligned graphene nanoribbons and crossbars from unzipped carbon nanotubes[J]. Nano Research, 2010, 3(6):387-394.
    Chen C, Wu J Z, Lam K T, et al. Graphene nanoribbons under mechanical strain[J]. Advanced Materials, 2015, 27(2):303-309.
    Xie L, Wang H, Jin C, et al. Graphene nanoribbons from unzipped carbon nanotubes:Atomic structures, Raman spectroscopy, and electrical properties[J]. Journal of the American Chemical Society, 2011, 133(27):10394-10397.
    Kong J, Chapline M G, Dai H. Functionalized carbon nanotubes for molecular hydrogen sensors[J]. Advanced Materials, 2001, 13(18):1384-1386.
  • 加载中
图(1)
计量
  • 文章访问数:  553
  • HTML全文浏览量:  151
  • PDF下载量:  113
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-02
  • 修回日期:  2020-04-22
  • 刊出日期:  2020-12-31

目录

    /

    返回文章
    返回