留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

煤层气制备金刚石的研究与应用

吴玉程 邢学刚 于盛旺 唐宾 树学峰

吴玉程, 邢学刚, 于盛旺, 唐宾, 树学峰. 煤层气制备金刚石的研究与应用. 新型炭材料, 2020, 35(4): 344-357. doi: 10.19869/j.ncm.1007-8827.20200034
引用本文: 吴玉程, 邢学刚, 于盛旺, 唐宾, 树学峰. 煤层气制备金刚石的研究与应用. 新型炭材料, 2020, 35(4): 344-357. doi: 10.19869/j.ncm.1007-8827.20200034
WU Yu-cheng, XING Xue-gang, YU Sheng-wang, TANG Bin, SHU Xue-feng. The use of coal bed methane to fabricate diamonds. New Carbon Mater., 2020, 35(4): 344-357. doi: 10.19869/j.ncm.1007-8827.20200034
Citation: WU Yu-cheng, XING Xue-gang, YU Sheng-wang, TANG Bin, SHU Xue-feng. The use of coal bed methane to fabricate diamonds. New Carbon Mater., 2020, 35(4): 344-357. doi: 10.19869/j.ncm.1007-8827.20200034

煤层气制备金刚石的研究与应用

doi: 10.19869/j.ncm.1007-8827.20200034
基金项目: 山西省科技重大专项(20181102013);山西省"1331工程"专项(PT201801).
详细信息
    通讯作者:

    吴玉程,教授.E-mail:wyc@tyut.edu.cn

  • 中图分类号: TQ127.1+1

The use of coal bed methane to fabricate diamonds

Funds: Science and Technology Major Project of Shanxi (20181102013), "1331 Project" Engineering Research Center of Shanxi (PT201801).
  • 摘要: 煤层气与煤伴生作为清洁能源,主要用于工业燃料和发电,而对低浓度煤层气,一般做法是排空,因此煤层气应用领域非常有限。本文介绍了煤层气的开采及提纯技术等研究现状,针对煤层气的分子式结构,提出高值利用煤层气路线,即采用化学气相沉积(CVD)方法,以煤层气为原料制备金刚石。介绍了合成原理与工艺过程,提出了不同浓度的煤层气抽采、发电、提纯、金刚石生产及尾气回收于一体的闭环应用系统。总结获得金刚石制品从工具级、热力学级、光学级到电子级的工艺控制规律,比较分析了CVD工艺方法与装备的优势,概述了气相沉积金刚石在相关领域的应用及研究进展,探讨了气相沉积金刚石作为功能材料的应用优势,为煤层气资源高效利用生产炭材料以及金刚石制备技术革新提供参考。
  • 黄格省, 于天学, 李雪静. 国内外煤层气利用现状及技术途径分析[J]. 石化技术与应用, 2010, 28(04):341-346. (HUANG Ge-sheng, YU Tian-xue, LI Xue-jing. Utilization status and technologies of global coal-bed gas[J]. Petrochemical technology & application, 2010, 28(04):341-346.)
    Zuo C, Qian Y, Tan J, et al. An experimental study of combustion and emissions in a spark-ignition engine fueled with coal-bed gas[J]. Energy, 2008, 33(3):455-461.
    Zheng S, Zhang X, Wang T, et al. An experimental study on premixed laminar and turbulent combustion of synthesized coalbed methane[J]. Energy, 2015, 92:355-364.
    Sarhosis V, Jaya A A, Thomas H R. Economic modelling for coal bed methane production and electricity generation from deep virgin coal seams[J]. Energy, 2016, 107:580-594.
    Mallick N, Prabu V. Energy analysis on coalbed methane (CBM) coupled power systems[J]. Journal of CO2 Utilization, 2017, 19:16-27.
    Fernández J, Marín P, Díez F V, et al. Combustion of coal mine ventilation air methane in a regenerative combustor with integrated adsorption:Reactor design and optimization[J]. Applied Thermal Engineering, 2016, 102:167-175.
    Salomons S, Hayes R E, Poirier M, et al. Flow reversal reactor for the catalytic combustion of lean methane mixtures[J]. Catalysis Today, 2003, 83(1):59-69.
    Seeburg D, Bentrup U, Kunkel B, et al. Influence of hydrothermal ageing time on the performance of in situ prepared VMCM-41 catalysts in the selective oxidation of methane to formaldehyde[J]. Microporous and Mesoporous Materials, 2019, 288:109581.
    Moehmel S, Steinfeldt N, Engelschalt S, et al. New catalytic materials for the high-temperature synthesis of hydrocyanic acid from methane and ammonia by high-throughput approach[J]. Applied Catalysis A:General, 2008, 334(1):73-83.
    王桂轮, 李成岳. 甲醇合成路线及其进展[J]. 现代化工, 2000, (08):25-27. (WANG Gui-lun, LI Cheng-yue. Routes for methanol synthesis and their progress[J]. Modern chemical insustry, 2000, (08):25-27.)
    李天阳, 安航, 李岳, 等. 热等离子体裂解甲烷制乙炔过程的数值模拟[J]. 化工进展, 2019, 38(08):3572-3582. (LI Tian-yang, AN Hang, LI Yue, et al. Numerical simulation of methane pyrolysis to acetylene via thermal plasma[J]. Chemical industry and engineering progress, 2019, 38(08):3572-3582.)
    林雪峰, 刘胜, 邸志强. 我国煤层气利用概述[J]. 煤炭技术, 2010, 29(04):1-3. (LIN Xue-feng, LIU Sheng, DI Zhi-qiang. Summarize of china coal-bed methane utilization[J]. Coal Technology, 2010, 29(04):1-3.)
    Zhong D L, Lu Y Y, Sun D J, et al. Performance evaluation of methane separation from coal mine gas by gas hydrate formation in a stirred reactor and in a fixed bed of silica sand[J]. Fuel, 2015, 143:586-594.
    Sun Q, Chen B, Li Y, et al. Enhanced separation of coal bed methane via bioclathrates formation[J]. Fuel, 2019, 243:10-14.
    Zhang G, Fan S, Hua B, et al. Optimization strategy and procedure for coal bed methane separation[J]. Journal of Energy Chemistry, 2013, 22(3):533-541.
    Wentorf R H. Diamond growth rates[J]. The Journal of Physical Chemistry, 1971, 75(12):1833-1837.
    Lee S T, Lin Z, Jiang X. CVD diamond films:Nucleation and growth[J]. Materials Science and Engineering:R:Reports, 1999, 25(4):123-154.
    Koizumi S, Nebel C, Nesladek M. Physics and Applications of CVD Diamond[M]. John Wiley & Sons, 2008.
    Sittas G, Kanda H, Kiflawi I, et al. Growth and characterization of Si-doped diamond single crystals grown by the HTHP method[J]. Diamond and related materials, 1996, 5(6-8):866-869.
    Park S Y, Liang Y. Biogenic methane production from coal:A review on recent research and development on microbially enhanced coalbed methane (MECBM)[J]. Fuel, 2016, 166:258-267.
    Scott A R, Kaiser W, Ayers Jr W B. Thermogenic and secondary biogenic gases, San Juan basin, Colorado and New Mexico——implications for coalbed gas producibility[J]. AAPG bulletin, 1994, 78(8):1186-1209.
    Meredith E, Wheaton J, Kuzara S. Coalbed-methane Basics:Ten Years of Lessons from the Powder River Basin, Montana[M]. MBMG, 2012.
    Tang P, Yang X, Liu Y S. Active carbon for coal mine methane separation by pressure swing adsorption[J]. Advanced Materials Research:Trans Tech Publ; 2011:586-590.
    Zhang J, Qu S, Li L, et al. Preparation of carbon molecular sieves used for CH4/N2 separation[J]. Journal of Chemical & Engineering Data, 2018, 63(5):1737-1744.
    Park Y, Ju Y, Park D, et al. Adsorption equilibria and kinetics of six pure gases on pelletized zeolite 13X up to 1.0 MPa:CO2, CO, N2, CH4, Ar and H2[J]. Chemical Engineering Journal, 2016, 292:348-365.
    May E F, Zhang Y, Saleman T L H, et al. Demonstration and optimisation of the four dual-reflux pressure swing adsorption configurations[J]. Separation and Purification Technology, 2017, 177:161-175.
    Xiao G, Saleman T L, Zou Y, et al. Nitrogen rejection from methane using dual-reflux pressure swing adsorption with a kinetically-selective adsorbent[J]. Chemical Engineering Journal, 2019, 372:1038-1046.
    Narayanan T M, Ohmura R. Influence of hydrate structure on continuous separation of coal bed methane gas:A thermodynamic simulation study[J]. Journal of Natural Gas Science and Engineering, 2016, 35:1511-1518.
    Shi X J, Zhang P. A comparative study of different methods for the generation of tetra-n-butyl ammonium bromide clathrate hydrate slurry in a cold storage air-conditioning system[J]. Applied Energy, 2013, 112:1393-1402.
    Zhong D L, Wang J L, Lu Y Y, et al. Precombustion CO2 capture using a hybrid process of adsorption and gas hydrate formation[J]. Energy, 2016, 102:621-629.
    Yan J, Lu Y Y, Zhong D L, et al. Enhanced methane recovery from low-concentration coalbed methane by gas hydrate formation in graphite nanofluids[J]. Energy, 2019, 180:728-736.
    Dou Z, Cai J, Cui Y, et al. Preparation and gas separation properties of metal-organic framework membranes[J]. Zeitschrift für anorganische und allgemeine Chemie, 2015, 641(5):792-796.
    Centeno T A, Fuertes A B. Supported carbon molecular sieve membranes based on a phenolic resin[J]. Journal of Membrane Science, 1999, 160(2):201-211.
    He L, Pan Y, Wang T, et al. Molecular simulation and optimization on the microporous structure in carbon molecular sieve membrane for CO2/CH4 separation[J]. Chemical Physics Letters, 2019:136910.
    Maghsoudi H, Soltanieh M. Simultaneous separation of H2S and CO2 from CH4 by a high silica CHA-type zeolite membrane[J]. Journal of Membrane Science, 2014, 470:159-165.
    Maqsood K, Ali A, Shariff A B M, et al. Process intensification using mixed sequential and integrated hybrid cryogenic distillation network for purification of high CO2 natural gas[J]. Chemical Engineering Research and Design, 2017, 117:414-438.
    Pahade R F, Saunders J B, Maloney J J. Process for separating methane and nitrogen[P]. Google Patents; 1986.
    Tonkovich A L, Qiu D, Dritz T A, et al. Process for separating nitrogen from methane using microchannel process technology[P]. Google Patents; 2007.
    Bundy F, Hall H T, Strong H, et al. Man-made diamonds[J]. nature, 1955, 176(4471):51-55.
    Abbaschian R, Clarke C. Recent progress in growth of diamond crystals[Z]. Innovative superhard materials and sustainable coatings for advanced manufacturing:Springer; 2005:193-202.
    唐敬友, 温上捷, 董庆东, 等. 静压法合成金刚石的成核研究[J]. 金刚石与磨料磨具工程, 2001, (02):22-24. (TANG Jing-you, WEN Shang-jie, DONG Qing-dong, et al. Research on the nucleation of diamond during static high pressure synthesis[J]. Diamond & abrasives engineering, 2001, (02):22-24.)
    徐康, 金增寿, 魏发学, 等. 炸药爆炸法制备超细金刚石粉末[J]. 含能材料, 1993, (03):19-21. (XU Kang, JIN Zeng-shou, WEI Fa-xue, et al. Preparation of ultrafine diamond by explosive detonation method[J]. Energetic materials, 1993, (03):19-21.)
    Chen P W, Ding Y S, Chen Q, et al. Spherical nanometer-sized diamond obtained from detonation[J]. Diamond and Related Materials, 2000, 9(9):1722-1725.
    Yamamoto Y, Imai T, Tsuno T, et al. Diamond reinforced composite material[P]. Google Patents; 1997.
    Dolmatov V Y. Ultradisperse diamonds of detonation synthesis:Production, properties and applications[J]. State Polytechnical University, St Petersburg, 2003.
    Shenderova O, Zhirnov V, Brenner D. Carbon nanostructures[J]. Critical reviews in solid state and material sciences, 2002, 27(3-4):227-356.
    Eversole W G. Synthesis of diamond[P]. Google Patents; 1962.
    Derjaguin B, Fedoseev D. The synthesis of diamond at low pressure[J]. Scientific American, 1975, 233(5):102-109.
    Matsumato S, Sato Y, Kamo M, et al. Vapor deposition of diamond particles from mathane[J]. Jpn J Appl Phys, 1982, 21(4):L183.
    Freund L B, Suresh S. Thin film materials:Stress, Defect Formation, and Surface Evolution[M]. Cambridge University Press, 2004.
    Singh J. Nucleation and growth mechanism of diamond during hot-filament chemical vapour deposition[J]. Journal of Materials Science, 1994, 29(10):2761-2766.
    Gómez-Aleixandre C, García M M, Sánchez O, et al. Influence of oxygen on the nucleation and growth of diamond films[J]. Thin Solid Films, 1997, 303(1):34-38.
    Jansen F, Machonkin M, Kuhman D. The deposition of diamond films by filament techniques[J]. Journal of Vacuum Science & Technology A:Vacuum, Surfaces, and Films, 1990, 8(5):3785-3790.
    Nakao S, Noda M, Watatani H, et al. Hydrogen-etching effect of substrate on deposition of diamond films by DC plasma chemical vapor deposition[J]. Japanese journal of applied physics, 1991, 30(7A):L1195.
    张魁武. 激光化学气相沉积(连载之二)[J]. 金属热处理, 2007, (07):94-101. (ZHANG Kui-wu. Laser chemical vapour deposition(LCVD)(Ⅱ)[J]. Heat Treatment of Metals, 2007, (07):94-101.)
    Lu F X, Tang W Z, Li C M, et al. Progress on the R&D for large area optical grade freestanding diamond films[J]. Infrared Technology, 2003, 25(4):1-7.
    Kamo M, Sato Y, Matsumoto S, et al. Diamond synthesis from gas phase in microwave plasma[J]. Journal of Crystal Growth, 1983, 62(3):642-644.
    Bachmann P K, Messier R. Emerging technology of diamond thin films[J]. Chemical & Engineering News Archive, 1989, 67(20):24-38.
    Pleuler E, Wild C, Füner M, et al. The CAP-reactor, a novel microwave CVD system for diamond deposition[J]. Diamond and Related Materials, 2002, 11(3):467-471.
    Füner M, Wild C, Koidl P. Novel microwave plasma reactor for diamond synthesis[J]. Applied Physics Letters, 1998, 72(10):1149-1151.
    唐伟忠, 于盛旺, 范朋伟, 等. 高品质金刚石膜微波等离子体CVD技术的发展现状[J]. 中国材料进展, 2012, 31(08):33-39. (TANG Wei-zhong, YU Sheng-wang, FAN Peng-wei, et al. Developments in microwave plasma chemical vapor deposition technology for preparing high quality diamond films[J]. Materials China, 2012, 31(08):33-39.)
    Li X J, Tang W Z, Yu S W, et al. Design of novel plasma reactor for diamond film deposition[J]. Diamond and Related Materials, 2011, 20(4):480-484.
    于盛旺, 范朋伟, 李义锋, 等. 椭球谐振腔式MPCVD装置高功率下大面积金刚石膜的沉积[J]. 人工晶体学报, 2011, 40(05):1145-1149. (YU Sheng-wang, FAN Peng-wei, LI Yi-feng, et al. Deposition of polycrystalline diamond films by using an ellipsoidal MPCVD reactor at high microwave power levels[J]. Journal of synthetic crystals, 2011, 40(05):1145-1149.)
    郑可, 钟强, 高洁, 等. 气体流量对TYUT型MPCVD装置沉积大面积金刚石膜的影响[J]. 人工晶体学报, 2016, 45(10):2359-2363. (ZHENG Ke, ZHONG Qiang, GAO Jie, et al. Effect of gas flow rates on the large area diamond films deposited by TYUT-type MPCVD equipment[J]. Journal of synthetic crystals, 2016, 45(10):2359-2363.)
    An K, Yu S W, Li X J, et al. Microwave plasma reactor with conical-reflector for diamond deposition[J]. Vacuum, 2015, 117:112-120.
    Gruen D M. Nanocrystalline diamond films[J]. Annual Review of Material Science, 1999, 29(1):211-259.
    Tsugawa K, Ishihara M, Kim J, et al. Nanocrystalline diamond film growth on plastic substrates at temperatures below 100℃ from low-temperature plasma[J]. Physical Review B, 2010, 82(12):125460.
    Antonin O, Schoeppner R, Gabureac M, et al. Nano crystalline diamond microsave chemical vapor deposition growth on three dimension structured silicon substrates at low temperature[J]. Diamond and Related Materials, 2018, 83:67-74.
    Tang C J, Neves A J, Pereira S, et al. Effect of nitrogen and oxygen addition on morphology and texture of diamond films (from polycrystalline to nanocrystalline)[J]. Diamond and Related Materials, 2008, 17(1):72-78.
    Tang Y, Li Y S, Zhang C, et al. Study of nanocrystalline diamond synthesis in MPCVD by bias enhanced nucleation and growth[J]. Diamond and Related Materials, 2012, 25:87-91.
    Shi B, Jin Q, Chen L, et al. Fundamentals of ultrananocrystalline diamond (UNCD) thin films as biomaterials for developmental biology:Embryonic fibroblasts growth on the surface of (UNCD) films[J]. Diamond and Related Materials, 2009, 18(2):596-600.
    Suzuki M, Ono T, Sakuma N, et al. Low-temperature thermionic emission from nitrogen-doped nanocrystalline diamond films on n-type Si grown by MPCVD[J]. Diamond and Related Materials, 2009, 18(10):1274-1277.
    McCauley T G, Gruen D M, Krauss A R. Temperature dependence of the growth rate for nanocrystalline diamond films deposited from an Ar/CH4 microwave plasma[J]. Applied Physics Letters, 1998, 73(12):1646-1648.
    Liu X, Lu P, Wang H, et al. Morphology and structure of Ti-doped diamond films prepared by microwave plasma chemical vapor deposition[J]. Applied Surface Science, 2018, 442:529-536.
    Denisenko A, Kohn E. Diamond power devices. Concepts and limits[J]. Diamond and Related Materials, 2005, 14(3):491-498.
    Tallaire A, Achard J, Silva F, et al. Growth of large size diamond single crystals by plasma assisted chemical vapour deposition:Recent achievements and remaining challenges[J]. Comptes Rendus Physique, 2013, 14(2):169-184.
    Friel I, Clewes S L, Dhillon H K, et al. Control of surface and bulk crystalline quality in single crystal diamond grown by chemical vapour deposition[J]. Diamond and Related Materials, 2009, 18(5):808-815.
    Su J J, Li Y F, Ding M H, et al. A dome-shaped cavity type microwave plasma chemical vapor deposition reactor for diamond films deposition[J]. Vacuum, 2014, 107:51-55.
    King D, Yaran M K, Schuelke T, et al. Scaling the microwave plasma-assisted chemical vapor diamond deposition process to 150-200 mm substrates[J]. Diamond and Related Materials, 2008, 17(4):520-524.
    Mallik A K, Bysakh S, Pal K S, et al. Large area deposition of polycrystalline diamond coatings by microwave plasma CVD[J]. Transactions of the Indian Ceramic Society, 2013, 72(4):225-232.
    Vikharev A L, Gorbachev A M, Kozlov A V, et al. Diamond films grown by millimeter wave plasma-assisted CVD reactor[J]. Diamond and Related Materials, 2006, 15(4):502-507.
    李义锋, 唐伟忠, 姜龙, 等. 915 MHz高功率MPCVD装置制备大面积高品质金刚石膜[J]. 人工晶体学报, 2019, 48(07):1262-1267. (LI Yi-feng, TANG Wei-zhong, JIANG Long, et al. Large area high quality diamond films deposition by 915 MHz high power MPCVD reactor[J]. Journal of Synthetic Crystals, 2019, 48(07):1262-1267.)
    李义锋, 唐伟忠, 苏静杰, 等. 环形天线-椭球谐振腔式MPCVD装置高功率下沉积高品质金刚石膜[J]. 人工晶体学报, 2016, 45(08):2028-2033. (LI Yi-feng, TANG Wei-zhong, SU Jing-jie, et al. Deposition of high quality diamond films with high power by a circumferential antenna ellipsoidal cavity type MPCVD reactor[J]. Journal of Synthetic Crystals, 2016, 45(08):2028-2033.)
    Ding M Q, Li L, Feng J. A study of high-quality freestanding diamond films grown by MPCVD[J]. Applied Surface Science, 2012, 258(16):5987-5991.
    Hemawan K W, Grotjohn T A, Reinhard D K, et al. Improved microwave plasma cavity reactor for diamond synthesis at high-pressure and high power density[J]. Diamond and Related Materials, 2010, 19(12):1446-1452.
    Ralchenko V, Sychov I, Vlasov I, et al. Quality of diamond wafers grown by microwave plasma CVD:effects of gas flow rate[J]. Diamond and Related Materials, 1999, 8(2):189-193.
    Su J, Li Y, Liu Y, et al. Revisiting the gas flow rate effect on diamond films deposition with a new dome-shaped cavity type microwave plasma CVD reactor[J]. Diamond and Related Materials, 2017, 73:99-104.
    Li X, Perkins J, Collazo R, et al. Investigation of the effect of the total pressure and methane concentration on the growth rate and quality of diamond thin films grown by MPCVD[J]. Diamond and Related Materials, 2006, 15(11):1784-1788.
    Sternschulte H, Bauer T, Schreck M, et al. Comparison of MWPCVD diamond growth at low and high process gas pressures[J]. Diamond and Related Materials, 2006, 15(4):542-547.
    Klein C A. Diamond windows and domes:Flexural strength and thermal shock[J]. Diamond and Related Materials, 2002, 11(2):218-227.
    Mistrik J, Janicek P, Taylor A, et al. Spectroscopic ellipsometry characterization of nano-crystalline diamond films prepared at various substrate temperatures and pulsed plasma frequencies using microwave plasma enhanced chemical vapor deposition apparatus with linear antenna delivery[J]. Thin Solid Films, 2014, 571:230-237.
    Saito D, Isshiki H, Kimura T. Positive-bias enhanced growth of high quality diamond films by microwave plasma chemical vapor deposition[J]. Diamond and Related Materials, 2009, 18(1):56-60.
    Umezawa H. Recent advances in diamond power semiconductor devices[J]. Materials Science in Semiconductor Processing, 2018, 78:147-156.
    Prins J. Bipolar transistor action in ion implanted diamond[J]. Applied Physics Letters, 1982, 41(10):950-952.
    Tsai W, Delfino M, Hodul D, et al. Diamond MESFET using ultrashallow RTP boron doping[J]. IEEE electron device letters, 1991, 12(4):157-159.
    Zeisse C R, Hewett C A, Nguyen R, et al. An ion-implanted diamond metal-insulator-semiconductor field-effect transistor[J]. IEEE electron device letters, 1991, 12(11):602-604.
    Kawarada H, Yamada T, Xu D, et al. Durability-enhanced two-dimensional hole gas of C-H diamond surface for complementary power inverter applications[J]. Scientific Reports, 2017, 7:42368.
    Umezawa H, Kato Y, Shikata S-i. 1Ω[WTB1] On-resistance diamond vertical-schottky barrier diode operated at 250℃[J]. Applied Physics Express, 2013, 6(1):011302.
    Bormashov V S, Terentiev S A, Buga S G, et al. Thin large area vertical Schottky barrier diamond diodes with low on-resistance made by ion-beam assisted lift-off technique[J]. Diamond and Related Materials, 2017, 75:78-84.
    Babinec T M, Hausmann B J, Khan M, et al. A diamond nanowire single-photon source[J]. Nature nanotechnology, 2010, 5(3):195.
    Kondo T, Kodama Y, Ikezoe S, et al. Porous boron-doped diamond electrodes fabricated via two-step thermal treatment[J]. Carbon, 2014, 77:783-789.
    Zhang W, Meng X, Chan C, et al. Oriented single-crystal diamond cones and their arrays[J]. Applied physics letters, 2003, 82(16):2622-2624.
    Wang Q, Bai J, Dai B, et al. Morphology-controllable synthesis of highly ordered nanoporous diamond films[J]. Carbon, 2018, 129:367-373.
    Montaño-Figueroa A G, Alcantar-Peña J J, Tirado P, et al. Tailoring of polycrystalline diamond surfaces from hydrophilic to superhydrophobic via synergistic chemical plus micro-structuring processes[J]. Carbon, 2018, 139:361-368.
    Jan Y T, Hsieh H C, Chen C F. Fabrication of nano-size conic diamond arrays by bias assisted PCVD[J]. Diamond and related materials, 1999, 8(2-5):772-780.
    Cuenca J A, Sankaran K J, Pobedinskas P, et al. Microwave cavity perturbation of nitrogen doped nano-crystalline diamond films[J]. Carbon, 2019, 145:740-750.
    Gamaly E G, Ebbesen T W. Mechanism of carbon nanotube formation in the arc discharge[J]. Physical Review B, 1995, 52(3):2083.
  • 加载中
图(1)
计量
  • 文章访问数:  671
  • HTML全文浏览量:  210
  • PDF下载量:  200
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-01
  • 修回日期:  2020-07-02
  • 刊出日期:  2020-08-28

目录

    /

    返回文章
    返回