2023 Vol. 38, No. 6

2023, 38(6)
Abstract(122) HTML(37) PDF(35)
Abstract:
2023, 38(6): 1-5.
Abstract(64) HTML(21) PDF(22)
Abstract:
Reviews
Carbon-based photothermal materials for the simultaneous generation of water vapor and electricity
QIU Zi-han, ZHAO Guan-yu, SUN Yang, WANG Xu-zhen, ZHAO Zong-bin, QIU Jie-shan
2023, 38(6): 997-1017. doi: 10.1016/S1872-5805(23)60785-1
Abstract(321) HTML(106) PDF(153)
Abstract:
Solar-driven interfacial vapor generation (SIVG) is increasingly used for fresh water production, having the advantages of low energy consumption, eco-friendliness, and high efficiency. Carbon-based photothermal materials (CPTMs) can introduce temperature and salinity gradients in the SIVG process because of their outstanding photothermal conversion properties, which have given SIVG great potential for both steam and power generation. Various kinds of CPTMs for clean water and electricity generation are discussed in this review. The basic principles and key performance indices of SIVG are first described and the photothermal and SIVG performance of various CPTMs including graphene oxides, carbon nanotubes, carbon dots and carbonized biomass are then summarized. Finally, current research concerning water/electricity cogeneration and ways to deal with the problems encountered are presented, to provide some guidelines for the use of multifunctional CPTMs for simultaneous steam and electricity generation.
Research progress on biomass carbon as the cathode of a metal-air battery
LU Li-lai, LI Qing-shan, SUN Yuan-na, KUANG Kun-bin, LI Zhi, WANG Tao, GAO Ying, WANG Jun-bo
2023, 38(6): 1018-1034. doi: 10.1016/S1872-5805(23)60784-X
Abstract(355) HTML(148) PDF(123)
Abstract:
Metal-air batteries have received significant attention as highly efficient energy conversion and storage devices. Nevertheless, several difficulties, such as the sluggish reaction kinetics of the cathode and the high cost of precious metals, have significantly hampered their commercialization. Biomass carbon materials have emerged as an important alternative for the development of high-performance cathode materials in metal-air batteries, owing to their remarkable electrochemical characteristics, environmental friendliness and cost effectiveness. In recent years, there has been huge progress in the preparation and design of biomass carbon materials. This review summarizes the most recent research on these materials, and the effects of the reaction mechanism, synthesis method and multidimensional (1D, 2D, 3D) structure on their electrocatalytic performance are reviewed. Finally, problems associated with their use and possible new developments are discussed. The review presents new perspectives on the structure of these materials, and provides a basis for the development of efficient, affordable, and stable cathode materials for metal-air batteries.
Research articles
3D porous NiCo2(CO3)3/reduced graphene oxide aerogel with heterogeneous interfaces for high-efficiency microwave absorption
WU Dan-dan, ZHANG Han-xiao, WANG Zheng-yan, ZHANG Yan-lan, WANG Yong-zhen
2023, 38(6): 1035-1049. doi: 10.1016/S1872-5805(23)60780-2
Abstract(222) HTML(72) PDF(104)
Abstract:
Advanced electromagnetic absorbing materials (EAMs) with strong absorption and a wide effective absorption bandwidth (EAB), using innovative microstructural design and suitable multicomponents remain a persistent challenge. Here, we report the production of a material by the hydrothermal reduction of a mixture of graphene oxide (GO), Ni(NO3)2·6H2O, and Co(NO3)2·6H2O, resulting in reduced GO (RGO) with a self-assembled 3D mesh structure filled with NiCo2(CO3)3 . The unique microstructure of this assembly not only solves the problem of NiCo2(CO3)3 particles agglomerating but also changes the electromagnetic parameters, thereby improving the impedance matching and attenuation ability. High electromagnetic wave absorption (EMA) was achieved by combining the 3D interconnected mesh structure and the various interfaces between NiCo2(CO3)3 and RGO. The minimal reflection loss (RLmin) was −58.5 dB at 2.3 mm, and the EAB was 6.5 GHz. The excellent EMA performance of the aerogel can be attributed to the multiple reflection, scattering, and relaxation process of the porous 3D structure as well as the strong polarization of the interfacial matrix.n of the interfacial matrix.
Fabrication of coal-based oxygen-rich porous carbon nanosheets for high-performance supercapacitors
CHE Xiao-gang, JIN Jiao, ZHANG Yi-xiao, LIU Si-yu, WANG Man, YANG Juan
2023, 38(6): 1050-1058. doi: 10.1016/S1872-5805(23)60752-8
Abstract(329) HTML(171) PDF(124)
Abstract:
The modification and optimization of porous carbon electrodes is key to achieving high-performance supercapacitors. Oxygen-rich porous carbon nanosheets (OPCNs) with a two-dimensional (2D) structure produced from the solid by-products of the coal industry were prepared by taking advantage of the rigid confinement of 2D MgAl-layered double hydroxides (MgAl-LDH) combined with KOH activation. The influence of carbonization temperature on the microstructure and surface properties of the OPCNs was investigated. The surface morphologies/compositions and surface textures of the prepared OPCNs were observed and analyzed by SEM, TEM, N2 adsorption and desorption, elemental analysis, etc. The optimized carbon sample activated at 700 °C (OPCN-700) had a high oxygen content of 24.4 wt%, a large specific surface area of 2 388 m2 g−1, and good wettability. In addition, the abundant micropores and 2D nanosheet structure of OPCN-700 provide efficient storage and transport for electrolyte ions. Because of this, when used as the electrode for a supercapacitor it has a high specific capacitance of 382 F g−1 at 0.5 A g−1, an excellent rate performance and cycling stability.
Mott-Schottky heterojunction formation between Co and MoSe2 on carbon nanotubes for superior hydrogen evolution
REN Xian-pei, HU Qi-wei, LING Fang, WU Fei, LI Qiang, PANG Liu-qing
2023, 38(6): 1059-1069. doi: 10.1016/S1872-5805(23)60782-6
Abstract(295) HTML(71) PDF(92)
Abstract:
Molybdenum selenide (MoSe2) has been regarded as an advanced electrocatalyst for the hydrogen evolution reaction (HER). However, its electrocatalytic performance is far inferior to platinum (Pt). Combining semiconductors with metals to construct Mott-Schottky heterojunctions has been considered as an effective method to enhance HER activity. In this work, we report a typical Mott-Schottky heterojunction composed of metal Co and semiconductor MoSe2 on carbon nanotubes (Co/MoSe2@CNT), prepared by a sol-gel process followed by thermal reduction. The characterization and theoretical calculations show that a Co/MoSe2 Mott-Schottky heterojunction can cause electron redistribution at the interface and form a built-in electric field, which not only optimizes the free energy of hydrogen atom adsorption, but also improves the charge transfer efficiency during hydrogen evolution. Thus, the Co/MoSe2@CNT has excellent catalytic activity with a low overpotential of 185 mV at 10 mA cm−2 and a small Tafel slope of 69 mV dec−1. This work provides a new strategy for constructing Co/MoSe2 Mott-Schottky heterojunctions and highlights the Mott-Schottky effect, which may inspire the future development of more attractive Mott-Schottky electrocatalysts for H2 production.
A 2D montmorillonite-carbon nanotube interconnected porous network that prevents polysulfide shuttling
ZHOU Ming-xia, ZHOU Wen-hua, LONG Xiang, ZHU Shao-kuan, Xu Peng, OUYANG Quan-sheng, SHI Bin, SHAO Jiao-jing
2023, 38(6): 1070-1079. doi: 10.1016/S1872-5805(23)60783-8
Abstract(128) HTML(43) PDF(72)
Abstract:
A commercial polypropylene (PP) separator was modified by a one-dimensional carbon nanotube (CNT) and two-dimensional montmorillonite (MMT) hybrid material (CNT-MMT). Because of the high electron conductivity of the CNTs, and the strong polysulfide (LiPS) adsorption ability and easy lithium ion transport through MMT, the interconnected porous CNT-MMT interlayer with excellent structural integrity strongly suppresses LiPS shuttling while maintaining high lithium-ion transport, producing a high utilization of the active sulfur. Lithium-sulfur batteries assembled with this interlayer have a high lithium-ion diffusion coefficient, a high discharge capacity and stable cycling performance. They had an initial specific capacity of 1373 mAh g−1 at 0.1 C, and a stable cycling performance with a low decay rate of 0.062% per cycle at 1 C after 500 cycles.
A one-pot method to prepare a multi-metal sulfide/carbon composite with a high lithium-ion storage capability
ZHANG Wei-cai, YANG Chao-wei, HU Shu-yu, FANG Ya-wei, LIN Xiao-min, XIE Zhuo-hao, ZHENG Ming-tao, LIU Ying-liang, LIANG Ye-ru
2023, 38(6): 1080-1091. doi: 10.1016/S1872-5805(23)60781-4
Abstract(235) HTML(68) PDF(94)
Abstract:
Because of their high electrochemical activity, good structural stability, and abundant active sites, multi-metal sulfide/carbon (MMS/C) composites are of tremendous interest in diverse fields, including catalysis, energy, sensing, and environmental science. However, their cumbersome, inefficient, and environmentally unfriendly synthesis is hindering their practical application. We report a straightforward and universal method for their production which is based on homogeneous multi-phase interface engineering. The method has enabled the production of 14 different MMS/C composites, as examples, with well-organized composite structures, different components, and dense heterointerfaces. Because of their composition and structure, a typical composite has efficient, fast, and persistent lithium-ion storage. A ZnS-Co9S8/C composite anode showed a remarkable rate performance and an excellent capacity of 651 mAh·g−1 at 0.1 A·g−1 after 600 cycles. This work is expected to pave the way for the easy fabrication of MMS/C composites.
A highly selective and sensitive electrochemical Cu(II) detector based on ion-imprinted magnetic carbon nanospheres
LI Rui-zhen, QIN Lei, FU Dong-ju, WANG Mei-ling, SONG Xing-fu, BAI Yong-hui, LIU Wei-feng, LIU Xu-guang
2023, 38(6): 1092-1103. doi: 10.1016/S1872-5805(23)60772-3
Abstract(174) HTML(76) PDF(77)
Abstract:
An electrochemical sensor for Cu(II) based on ion-imprinted polymers was prepared by combining surface imprinting with electrochemical polymerization deposition. The sensor was modified by ion-imprinted magnetic carbon nanospheres with a specific selectivity and sensitivity for Cu(II). The morphology and structure of the materials were characterized and analyzed. Sensors with the imprinted electrode had a stronger selectivity and higher sensitivity towards Cu(II) compared with their original counterparts. Within relative concentrations of Cu(II) from 10−6 to 10−10 mol L−1, the detection limit of the sensor was as low as 5.138×10−16 mol L−1 (S/N=3). The sensor is resistant to interference, and has good reproducibility, and stability, making it excellent for the electrochemical detection of metal ions.
A highly efficient, rapid, room temperature synthesis method for coal-based water-soluble fluorescent carbon dots and its use in Fe3+ ion detection
CHENG Zhong-fu, WU Xue-yan, LIU Lei, HE Long, YANG Zu-guo, CAO Chang, LU Yan, GUO Ji-xi
2023, 38(6): 1104-1115. doi: 10.1016/S1872-5805(23)60706-1
Abstract(259) HTML(105) PDF(83)
Abstract:
We report a method for the of coal-based fluorescent carbon dots (CDs) at room temperature using a mixture of hydrogen peroxide (H2O2) and formic acid (HCOOH) as the oxidant instead of concentrated HNO3 or H2SO4. The CDs have an excitation dependent behavior with a high quantum yield (QY) of approximately 7.2%. The CDs are water soluble and have excellent photo-stability, good resistance to salt solutions, and are insensitive to pH in a range of 2.0-12.0. The CDs were used as a very sensitive probe for the turn-off sensing of Fe3+ ion with a detection limit as low as 600 nmol/L and a detection range from 2 to 100 μmol/L. This work provides a way for the high value-added utilization of coal.
Contribution of surface roughness and oxygen-containing groups to the interfacial shear strength of carbon fiber/epoxy resin composites
LIANG Yi-cai, ZHANG Xing-hua, WEI Xing-hai, JING De-qi, SU Wei-guo, ZHANG Shou-chun
2023, 38(6): 1116-1126. doi: 10.1016/S1872-5805(23)60720-6
Abstract(277) HTML(153) PDF(77)
Abstract:
The interfacial shear strength (IFSS) between carbon fibers (CFs) and the matrix is crucial to the performance of CF-reinforced polymer composites. To evaluate the contribution of mechanical interlocking and chemical anchoring at the interfaces of a polyacrylonitrile-based CF (TORAYCA T800SC-12000-10E)-reinforced epoxy resin (EP: bisphenol A type epoxy resin and tetrafunctional epoxy resin) composites, the surface roughness and content of oxygen-containing functional groups of the CFs were respectively altered by ammonia treatment and electrochemical oxidation. The results showed that ammonia treatment increased the surface roughness without much change to the surface elemental composition, while electrochemical oxidation increased the number of surface oxygen groups without changing the surface roughness. The IFSS of CF/EP composites was tested by the micro-droplet method. The relationships between IFSS, and surface roughness and oxygen content were obtained by linear fitting. The results showed that in the interfacial bonding of CF to epoxy resin, the contribution of chemical anchoring to the IFSS is larger than that of mechanical interlocking.
Effect of chemical vapor infiltration on the flexural properties of C/C-SiC composites prepared by the precursor infiltration pyrolysis method
JIA Lin-tao, WANG Meng-qian, GUO Xiao-feng, ZHU Jie, LI Ai-jun, PENG Yu-qing
2023, 38(6): 1127-1134. doi: 10.1016/S1872-5805(23)60732-2
Abstract(297) HTML(160) PDF(106)
Abstract:
Carbon/carbon-silicon carbide (C/C-SiC) composites were prepared by impregnation, hot-pressing with curing, carbonization at 800 oC and high-temperature heat treatment (800-1600 oC) using a 2D laminated carbon cloth as the reinforcing filler, and furfurone resin mixed with silicon, carbon from furfurone resin and SiC powders as the matrix. The effects of the addition of the three powders as well as subsequent chemical vapor infiltration (CVI) by methane on the density, microstructure and bend strength of the composites were investigated by scanning electron microscopy, density measurements, X-ray diffraction and mechanical testing. Both the SiC powders formed by the reaction at 1600 oC between the added Si and C particles and the added SiC powder, play a role in the reinforcement of the materials. In three-point bending, the composites had a pseudoplastic fracture mode and showed interlaminar cracking. After 10 h CVI with methane, pyrolytic carbon was formed at the interface between some of the carbon fibers and the resin carbon matrix, which produced maximum increases in the density and flexural strength of the composites of 4.98% and 38.86%, respectively.
Raman mapping microspectroscopy of the effects of cryogenic cycling on the interfacial micromechanics of carbon fiber-reinforced polyimide composites
JIA Li-shuang, WU Qi-lin, CHEN Hui-fang
2023, 38(6): 1135-1142. doi: 10.1016/S1872-5805(23)60712-7
Abstract(147) HTML(100) PDF(71)
Abstract:
Raman spectroscopy has unique advantages in studying the micro-mechanical behavior of interfaces. Carbon nanotubes (CNTs) acting as stress sensors were added to both polyimide films (CNT-PI) and those reinforced with carbon fibers (CF/CNT-PI) . Raman mapping microspectroscopy was then used to investigate the interfacial stress distributions of the films during different cryogenic-room temperature cycles (-198-25 °C, 0-300 cycles). It was found that the micro stress of CNT-PI films (around 175 MPa) had no significant changes even after 300 cycles. The cryogenic cycling had very little effect on the internal stress, indicating that PI had a good low temperature resistance. For the CF/CNT-PI films, the micro stress distributions of CFs, interface, and matrix regions were successfully obtained. It was found that the CFs bear a greater stress than the matrix, showing that CFs had always been the major stress bearer, confirming the strengthening effect of CFs. When the CF/CNT-PI films were cycled fewer than 250 times, the effect of cryogenic cycling on the micro stress was insignificant. But once the number of cycles reached 300, the compressive stresses on the fiber and interface increased by 21% and 12.9%, respectively, implying a deterioration of the mechanical properties. By Raman mapping, the micro-mechanical distributions of the reinforced material, matrix and interface of the composites under cyclic temperature changes were effectively quantified. This is therefore an effective method for evaluating the safety of composite materials.