Vijayshankar Asokan, Dorte Nørgaard Madsen, Pawel Kosinski, Velaug Myrseth. Transformation of carbon black into carbon nano-beads and nanotubes: the effect of catalysts. New Carbon Mater., 2015, 30(1): 19-29. doi: 10.1016/S1872-5805(15)60172-X
Citation: Vijayshankar Asokan, Dorte Nørgaard Madsen, Pawel Kosinski, Velaug Myrseth. Transformation of carbon black into carbon nano-beads and nanotubes: the effect of catalysts. New Carbon Mater., 2015, 30(1): 19-29. doi: 10.1016/S1872-5805(15)60172-X

Transformation of carbon black into carbon nano-beads and nanotubes: the effect of catalysts

doi: 10.1016/S1872-5805(15)60172-X
  • Received Date: 2014-09-28
  • Accepted Date: 2015-02-13
  • Rev Recd Date: 2015-02-01
  • Publish Date: 2015-02-28
  • Structural transformation of carbon black (CB) into carbon nano-beads and nanotubes was achieved at 1 000 ℃ using ferrocene and nickelocene as catalyst precursors using a simple and single step chemical vapor deposition method. The samples were characterized by XRD, SEM, TEM, HR-TEM and Raman spectroscopy. Results indicate that different morphological and high quality nano carbon structures were obtained using different weight ratios of catalyst to precursor. The use of bimetallic catalysts provides many different morphologies and a higher degree of crystal order of the carbon nanostructures than the use of mono-metallic catalysts. The nanotubes were mostly filled with metal nanoparticles and the degree of metal-filling is dependent on the weight ratio of catalyst precursor to CB. Metal-filled multi-walled carbon nano-bead structures with a high degree of crystalline order are also obtained at weight ratios of CB:ferrocene:nickelocene of 1:2:2.
  • loading
  • Iijima S. Helical microtubules of graphitic carbon
    [J]. Nature, 1991, 354(6348): 56-58.
    Ehlich R, Biro LP, Hertel IV. Growth of nanotubes by decomposition of C60 on transition metal surfaces
    [J]. Synthetic Metals, 1999, 103(1-3): 2486-2487.
    Nikolaev P, Bronikowski MJ, Bradley RK, et al. Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide
    [J]. Chemical Physics Letters, 1999, 313(1-2): 91-97.
    Lee Y T, Kim N S, Park J, et al. Temperature-dependent growth of carbon nanotubes by pyrolysis of ferrocene and acetylene in the range between 700 and 1000℃
    [J]. Chemical Physics Letters, 2003, 372(5-6): 853-859.
    Bell MS, Teo KBK, Lacerda RG, et al. Carbon nanotubes by plasma-enhanced chemical vapor deposition
    [J]. Pure and Applied Chemistry, 2006, 78(6): 1117-1125.
    Kokai F, Nozaki I, Okada T, et al. Efficient growth of multi-walled carbon nanotubes by continuous-wave laser vaporization of graphite containing B4C
    [J]. Carbon, 2011, 49(4): 1173-1181.
    Kishinevsky S, Nikitenko SI, Pickup DM, et al. Catalytic transformation of carbon black to carbon nanotubes
    [J]. Chemistry of Materials, 2002, 14(11): 4498-4501.
    Doherty SP, Chang RPH. Synthesis of multiwalled carbon nanotubes from carbon black
    [J]. Applied Physics Letters, 2002, 81: 2466-2468.
    Buchholz DB, Doherty SP, Chang RPH. Mechanism for the growth of multiwalled carbon-nanotubes from carbon black
    [J]. Carbon, 2003, 41(8): 1625-1634.
    Chen Z-G, Li F, Ren W-C, et al. Double-walled carbon nanotubes synthesized using carbon black as the dot carbon source
    [J]. Nanotechnology, 2006, 1713: 3100-3104.
    Donnet JB, Oulanti H, Le Huu T. Mechanism growth of multiwalled carbon nanotubes on carbon black
    [J]. Diamond and Related Materials, 2008, 17(7-10): 1506-1512.
    Okuno H, Grivei E, Fabry F, Gruenberger TM, et al. Synthesis of carbon nanotubes and nano-necklaces by thermal plasma process
    [J]. Carbon, 2004, 42(12-13): 2543-2549.
    Lian W, Song H, Chen X, et al. The transformation of acetylene black into onion-like hollow carbon nanoparticles at 1 000 ℃ using an iron catalyst
    [J]. Carbon, 2008, 46(3): 525-530.
    Sengupta J, Jacob C. The effect of Fe and Ni catalysts on the growth of multiwalled carbon nanotubes using chemical vapor deposition
    [J]. Journal of Nanoparticle Research, 2010, 12(2): 457-465.
    Zhang C, Li J, Shi C, et al. The efficient synthesis of carbon nano-onions using chemical vapor deposition on an unsupported Ni-Fe alloy catalyst
    [J]. Carbon, 2011, 49(4): 1151-1158.
    Chiang W-H, Sankaran RM. The influence of bimetallic catalyst composition on single-walled carbon nanotube yield
    [J]. Carbon, 2012, 50(3): 1044-1150.
    Tsoufis T, Xidas P, Jankovic L, et al. Catalytic production of carbon nanotubes over Fe-Ni bimetallic catalysts supported on MgO
    [J]. Diamond and Related Materials, 2007, 16(1): 155-160.
    Lv R, Cao A, Kang F, et al. Single-crystalline permalloy nanowires in carbon nanotubes: enhanced encapsulation and magnetization
    [J]. The Journal of Physical Chemistry C, 2007, 111(30): 11475-11479.
    Harris PJF. Carbon Nanotube Science
    [J]. Cambridge University Press, 2009.
    Hiura H, Ebbesen TW, Tanigaki K, et al. Raman studies of carbon nanotubes
    [J]. Chemical Physics Letters, 1993, 202(6): 509-512.
    Pimenta MA, Dresselhaus G, Dresselhaus MS, et al. Studying disorder in graphite-based systems by Raman spectroscopy
    [J]. Physical Chemistry Chemical Physics, 2007, 9(11): 1276-1290.
    Asokan V, Dorte NM, Velaug M, et al. Effect of temperature on the transformation of carbon black into nanotubes
    [J]. Advanced Materials Research, 2014, 875-877: 1565-1571.
    Cheng J, Zou XP, Zhu G, et al. Synthesis of iron-filled carbon nanotubes with a great excess of ferrocene and their magnetic properties
    [J]. Solid State Communications, 2009, 149(39-40): 1619-1622.
    Ding F, Rosén A, Campbell EEB, et al. Graphitic encapsulation of catalyst particles in carbon nanotube production
    [J]. Journal of Physical Chemistry B, 2006, 110(15): 7666-7670.
    Qian W, Liu T, Wang Z, et al. Effect of adding nickel to iron-alumina catalysts on the morphology of as-grown carbon nanotubes
    [J]. Carbon, 2003, 41(13): 2487-2493.
    Rodriguez NM, Kim MS, Fortin F, et al. Carbon deposition on iron-nickel alloy particles
    [J]. Applied Catalysis A: General, 1997, 148(2): 265-282.
    Jourdain V, Bichara C. Current understanding of the growth of carbon nanotubes in catalytic chemical vapour deposition
    [J]. Carbon, 2013, 58: 2-39.
    Kang JL, Li JJ, Du XW, et al. Synthesis and growth mechanism of metal filled carbon nanostructures by CVD using Ni/Y catalyst supported on copper
    [J]. Journal of Alloys and Compounds, 2008, 456(1-2): 290-296.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(732) PDF Downloads(750) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return