WANG Jian, WANG Meng, XIONG Ji-ru, LU Chun-hua. Enhanced photocatalytic activity of a TiO2/graphene composite by improving the reduction degree of graphene. New Carbon Mater., 2015, 30(4): 357-363. doi: 10.1016/S1872-5805(15)60195-0
Citation: WANG Jian, WANG Meng, XIONG Ji-ru, LU Chun-hua. Enhanced photocatalytic activity of a TiO2/graphene composite by improving the reduction degree of graphene. New Carbon Mater., 2015, 30(4): 357-363. doi: 10.1016/S1872-5805(15)60195-0

Enhanced photocatalytic activity of a TiO2/graphene composite by improving the reduction degree of graphene

doi: 10.1016/S1872-5805(15)60195-0
Funds:  China Postdoctoral Science Foundation(2014M551577).
  • Received Date: 2015-03-16
  • Accepted Date: 2015-09-07
  • Rev Recd Date: 2015-08-10
  • Publish Date: 2015-08-28
  • Two kinds of graphene prepared by a high-temperature exfoliation and a solvothermal method were used as supports of a TiO2 catalyst (P25) from Degussa, Inc to prepare TiO2/graphene composites. The photocatalytic activities of the composites were evaluated by their degradation of Rhodamine B in aqueous solutions under visible light. Results indicate that the composites prepared by high-temperature exfoliation have much higher photocatalytic activities than those produced by the solvothermal method or the unsupported P25. Both the adsorption capacity of Rhodamine B on the composites and their light absorption characteristics are independent of the kind of graphene used. The activity increases with exfoliation temperature and reduction degree of the graphene regardless of the methods and conditions used, indicating that a high degree of reduction of graphene can inhibit the recombination of electron-hole pairs generated by light irradiation by increasing electron transfer from TiO2 to the graphene layer.
  • loading
  • Di Paola A, García-Lópeza E, Marcìa G, et al. A survey of photocatalytic materials for environmental remediation
    [J]. J Hazard Mater, 2012, 211: 3-29.
    Kudo A, Miseki Y. Heterogeneous photocatalyst materials for water splitting
    [J]. Chem Soc Rev, 2009, 38(1): 253-278.
    Linsebigler A L, Lu G, Yates Jr J T. Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results
    [J]. Chem Rev, 1995, 95(3): 735-758.
    Mor G K, Varghese O K, Paulose M, et al. A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications
    [J]. Sol Energ Mater & Sol C, 2006, 90(14): 2011-2075.
    Bavykin D V, Friedrich J M, Walsh F C. Protonated titanates and TiO2 nanostructured materials: synthesis, properties, and applications
    [J]. Adv Mater, 2006, 18(21): 2807-2824.
    Huang B, Saka S. Photocatalytic activity of TiO2 crystallite-activated carbon composites prepared in supercritical isopropanol for the decomposition of formaldehyde
    [J]. J Wood Sci, 2003, 49(1): 79-85.
    Yu Y, Yu J C, Yu J G, et al. Enhancement of photocatalytic activity of mesoporous TiO2 by using carbon nanotubes
    [J]. Appl Catal A: Gen, 2005, 289(2): 186-196.
    Woan K, Pyrgiotakis G, Sigmund W. Photocatalytic carbonnanotube-TiO2 composites
    [J]. Adv Mater, 2009, 21(21): 2233-2239.
    Neto A C, Guinea F, Peres N, et al. The electronic properties of graphene
    [J]. Rev Mod Phys, 2009, 81(1): 109.
    Geim A K, Novoselov K S. The rise of graphene
    [J]. Nature Mater, 2007, 6(3): 183-191.
    Liang Y, Wang H, Casalongue H S, et al. TiO2 nanocrystals grown on graphene as advanced photocatalytic hybrid materials
    [J]. Nano Res, 2010, 3(10): 701-705.
    Kim H I, Moon G H, Monllor-Satoca D, et al. Solar photoconversion using graphene/TiO2 composites: Nanographene shell on TiO2 core versus TiO2 nanoparticles on graphene sheet
    [J]. J Phys Chem C, 2012, 116(1): 1535-1543.
    Zhang H, Xu P, Du G, et al. A facile one-step synthesis of TiO2/graphene composites for photodegradation of methyl orange
    [J]. Nano Research, 2011, 4(3): 274-283.
    Dreyer D R, Park S, Bielawski C W, et al. The chemistry of graphene oxide
    [J]. Chem Soc Rev, 2010, 39(1): 228-240.
    Shen J, Yan B, Shi M, et al. One step hydrothermal synthesis of TiO2-reduced graphene oxide sheets
    [J]. J Mater Chem, 2011, 21(10): 3415-3421.
    Perera S D, Mariano R G, Vu K, et al. Hydrothermal synthesis of graphene-TiO2 nanotube composites with enhanced photocatalytic activity
    [J]. ACS Catal, 2012, 2(6): 949-956.
    Williams G, Seger B, Kamat P V. TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide
    [J]. ACS Nano, 2008, 2(7): 1487-1491.
    Luo D, Zhang G, Liu J, et al. Evaluation criteria for reduced graphene oxide
    [J]. J Phys Chem C, 2011, 115(23): 11327-11335.
    Mcallister M J, Li J L, Adamson D H, et al. Single sheet functionalized graphene by oxidation and thermal expansion of graphite
    [J]. Chem Mater, 2007, 19(18): 4396-4404.
    Sakthivel S, Kisch H. Daylight photocatalysis by carbon-modified titanium dioxide
    [J]. Angewandte Chemie International Edition, 2003, 42(40): 4908-4911.
    Ren W, Ai Z, Jia F, et al. Low temperature preparation and visible light photocatalytic activity of mesoporous carbon-doped crystalline TiO2
    [J]. Appl Catal B- Environ, 2007, 69(3): 138-144.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(561) PDF Downloads(515) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return