HOU Zhen-hua, HAO Ming-yang, LUO Rui-ying, XIANG Qiao, YANG Wei, SHANG Hai-dong, XU Huai-zhe. Effect of carrier gases on densification rate, bulk density and microstructure of carbon/carbon composites. New Carbon Mater., 2015, 30(4): 364-371. doi: 10.1016/S1872-5805(15)60196-2
Citation: HOU Zhen-hua, HAO Ming-yang, LUO Rui-ying, XIANG Qiao, YANG Wei, SHANG Hai-dong, XU Huai-zhe. Effect of carrier gases on densification rate, bulk density and microstructure of carbon/carbon composites. New Carbon Mater., 2015, 30(4): 364-371. doi: 10.1016/S1872-5805(15)60196-2

Effect of carrier gases on densification rate, bulk density and microstructure of carbon/carbon composites

doi: 10.1016/S1872-5805(15)60196-2
Funds:  National Natural Science Foundation of China (21071011).
  • Received Date: 2015-02-25
  • Accepted Date: 2015-09-07
  • Rev Recd Date: 2015-07-20
  • Publish Date: 2015-08-28
  • Effect of carrier gases(H2 and CO2) on the densification rate, bulk density and microstructure of carbon/carbon composites fabricated by isothermalchemical vapor infiltration from methane (CH4) was investigated.In the initial 50 h, the densification rate obtained from CH4-H2 is obviously higher than that from CH4-CO2, while the densification rate from CH4-H2 is lower than that from CH4-CO2with a further increase of infiltration time. When the carrier gas is switched from H2 to CO2, the average bulk density of the compositeincreases from 1.626 to 1.723 g/cm3, the maximum radial density gradient decreases from 0.074 to 0.056 g/cm3, the matrix changes from the pure rough laminar to hybrid rough laminar pyrocarbon with overgrowth cones, and the average degree of graphitization reduces from 62.7% to 50.8%. These significant changes are caused by the fact that CO2 can effectively reduce the surface deposition rate but does not inhibit the in-pore infiltration, and thatdefects are formed in the deposits by a CO2 introduction in gas phase and the resulting overgrowth cones deteriorate the texture degree of pyrocarbon.
  • loading
  • Delhaes P. Chemical vapor deposition and infiltration processes of carbon materials
    [J]. Carbon, 2002, 40(5): 641-657.
    Luo R Y, Liu T, Li J S, et al. Thermophysical properties of carbon/carbon composites and physical mechanism of thermal expansion and thermal conductivity
    [J]. Carbon, 2004, 42(14): 2887-2895.
    SUN Chao, ZHANG Bo, YANG Xiao-guang, et al. Effect of cycle time of in-situ polymerization of naphthalene on the densification and performance of C/C composites
    [J]. New Carbon Materials, 2012, 27(1): 49-54. (孙 超, 张 博, 杨晓光, 等. 原位聚合增密次数对C/C复合材料性能的影响
    [J]. 新型炭材料, 2012, 27(1): 49-54.)
    Reuge N, Vignoles G L. Modeling of isobaric-isothermal chemical vapor infiltration: effects of reactor control parameters on a densification
    [J]. Journal of Materials Processing Technology, 2005, 166(1): 15-29.
    Ozcan S D, Tezcan J, Filip P. Microstructure and elastic properties of individual components of C/C composites
    [J]. Carbon, 2009, 47(15): 3403-3414.
    Zhang W G, Hüttinger K J. Simulation studies on chemical vapor infiltration of carbon
    [J]. Composites Science and Technology, 2002, 62(15): 1947-1955.
    Rovillain D, Trinquecoste M, Bruneton E, et al. Film boiling chemical vapor infiltration: An experimental study on carbon/carbon composite materials
    [J]. Carbon, 2001, 39(9): 1355-1365.
    Dupel P, Bourrat X, Pailler R. Structure of pyrocarbon infiltraed by pulse-CVI
    [J]. Carbon, 1995, 33(9): 1193-1204.
    Becker A, Hu Z, Hüttinger K J. A hydrogen inhibition model of carbon deposition from light hydrocarbons
    [J]. Fuel, 2000, 79(13): 1573-1580.
    Zhang W G, Hu Z J, Hüttinger K J. Chemical vapor infiltration of carbon fiber felt: optimization of densification and carbon microstructure
    [J]. Carbon, 2002, 40(14): 2529-2545.
    Tang Z H, Xiong X, Zhang H B. Effect of carrier gas on bulk densiy and microstructure distribution of carbon/carbon composties fabricated by thermal gradient chemical vapor infiltration
    [J]. Carbon, 2012, 50(3): 1243-1252.
    Kermiotis Ch, Vourliotakis G, Skevis G, et al. Experimental and computational study of methane mixtures pyrolysis in a flow reactor under atmospheric pressure
    [J]. Energy, 2002, 43(1): 103-110.
    Vignoles G L, Langlais F, Descamps C, et al. CVD and CVI of pyrocarbon from various precursors
    [J]. Surface and Coatings Technology, 2004, 188-189: 241-249.
    Ferrari A C. Determination of bonding in diamond-like carbon by Raman spectroscopy
    [J]. Diamond and Related Materials, 2002, 11(3-6): 1053-1061.
    Kuzmany H, Pfeiffer R, Salk N, et al. The mystery of the 1 140 cm-1 Raman line in nanocrystalline diamond films
    [J]. Carbon, 2004, 42(5-6): 911-917.
    Coffin L F. Structure-property relations for pyrolytic graphite
    [J]. Journal of the American Ceramic Society, 1964, 47(10): 473-478.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(611) PDF Downloads(362) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return