REN Gui-zhi, CHEN Cong-jie, DENG Li-hui, QUAN Hai-yu, LU Yong-gen, WU Qi-lin. Microstructural heterogeneity on the cylindrical surface of carbon fibers analyzed by Raman spectroscopy. New Carbon Mater., 2015, 30(5): 476-480. doi: 10.1016/S1872-5805(15)60202-5
Citation: REN Gui-zhi, CHEN Cong-jie, DENG Li-hui, QUAN Hai-yu, LU Yong-gen, WU Qi-lin. Microstructural heterogeneity on the cylindrical surface of carbon fibers analyzed by Raman spectroscopy. New Carbon Mater., 2015, 30(5): 476-480. doi: 10.1016/S1872-5805(15)60202-5

Microstructural heterogeneity on the cylindrical surface of carbon fibers analyzed by Raman spectroscopy

doi: 10.1016/S1872-5805(15)60202-5
Funds:  National Natural Science Foundation of China(60975059);Key Laboratory of Advanced Civil Engineering Materials,Tongji University(201301);Research and Innovation Project of Shanghai Municipal Education Commission(14ZZ069).
  • Received Date: 2015-03-08
  • Accepted Date: 2015-11-10
  • Rev Recd Date: 2015-10-08
  • Publish Date: 2015-10-28
  • A polyacrylonitrile-based carbon fiber monofilament was characterized by a confocal micro Raman spectrometer with the aid of a stage that allowed the axial rotation of the fiber so that the whole surface area could be examined. Results indicate that disorder is localized and aligned along the axial direction of the fiber. La values in defective regions are relatively lower than in others. The changes in the amount of amorphous carbon in different regions are significant.
  • loading
  • Jones J B, Barr J B, Smith R E. Analysis of flaws in high-strength carbon fibres from mesophase pitch[J]. Journal of Materials Science, 1980, 15(10):2455-2465.
    Burnay S, Sharp J. Defect structure of PAN-based carbon fibres[J]. Journal of Microscopy, 2011, 97(1-2):153-163.
    Cantwell W, Morton J. The significance of damage and defects and their detection in composite materials:A review[J]. The Journal of Strain Analysis for Engineering Design, 1992, 27(1):29-42.
    Kaushik V K, Bhardwaj A. Characterization of carbon fibre surfaces using electron spectroscopy for chemical analysis[J]. Polymer Testing, 1994, 13(4):355-362.
    Li W, Long D, Miyawaki J, et al. Structural features of polyacrylonitrile-based carbon fibers[J]. Journal of materials science, 2011, 47(2):919-928.
    Montes-Morán M A, Young R J. Raman spectroscopy study of high-modulus carbon fibres:effect of plasma-treatment on the interfacial properties of single-fibre-epoxy composites:Part II:Characterisation of the fibre-matrix interface[J]. Carbon, 2002, 40(6):857-875.
    Wang F, Li R, Sun X, et al. Confocal Raman spectromicroscopy for tin-core/carbon-shell nanowire heterostructure[J]. Applied Surface Science, 2011, 258(1):394-398.
    Kim C, Park S-H, Cho J-I, et al. Raman spectroscopic evaluation of polyacrylonitrile-based carbon nanofibers prepared by electrospinning[J]. Journal of Raman Spectroscopy, 2004, 35(11):928-933.
    Sadezky A, Muckenhuber H, Grothe H, et al. Raman microspectroscopy of soot and related carbonaceous materials:Spectral analysis and structural information[J]. Carbon, 2005, 43(8):1731-1742.
    Hao X, Yonggen L, Mouhua W, et al. Effect of gamma-irradiation on the mechanical properties of polyacrylonitrile-based carbon fiber[J]. Carbon, 2012, 52:427-439.
    Gao A, Su C, Luo S, et al. Densification mechanism of polyacrylonitrile-based carbon fiber during heat treatment[J]. Journal of Physics and Chemistry of Solids, 2011, 72(10):1159-1164.
    Kong K, Deng L, Kinloch I A, et al. Production of carbon fibres from a pyrolysed and graphitised liquid crystalline cellulose fibre precursor[J]. Journal of materials science, 2012:1-9.
    Kobayashi T, Sumiya K, Fujii Y, et al. Stress concentration in carbon fiber revealed by the quantitative analysis of X-ray crystallite modulus and Raman peak shift evaluated for the variously-treated monofilaments under constant tensile forces[J]. Carbon, 2013, 53:29-37.
    Kobayashi T, Sumiya K, Fukuba Y, et al. Structural heterogeneity and stress distribution in carbon fiber monofilament as revealed by synchrotron micro-beam X-ray scattering and micro-Raman spectral measurements[J]. Carbon, 2011, 49(5):1646-1652.
    Tuinstra F, Koenig J. Characterization of graphite fiber surfaces with Raman spectroscopy[J]. Journal of Composite Materials, 1970, 4(4):492-499.
    Nemanich R, Solin S. First-and second-order Raman scattering from finite-size crystals of graphite[J]. Physical Review B, 1979, 20(2):392.
    Vollebregt S, Ishihara R, Tichelaar F D, et al. Influence of the growth temperature on the first and second-order Raman band ratios and widths of carbon nanotubes and fibers[J]. Carbon, 2012, 50(10):3542-3554.
    Katagiri G, Ishida H, Ishitani A. Raman spectra of graphite edge planes[J]. Carbon, 1988, 26(4):565-571.
    Wang Y, Alsmeyer D C, Mccreery R L. Raman spectroscopy of carbon materials:structural basis of observed spectra[J]. Chemistry of Materials, 1990, 2(5):557-563.
    Tuinstra F, Koenig J L. Raman spectrum of graphite[J]. The Journal of Chemical Physics, 1970, 53:1126.
    Ebner E, Burow D, Panke J, et al. Carbon blacks for lead-acid batteries in micro-hybrid applications-Studied by transmission electron microscopy and Raman spectroscopy[J]. Journal of Power Sources, 2013, 222(0):554-560.
    Lespade P, Al-Jishi R, Dresselhaus M. Model for Raman scattering from incompletely graphitized carbons[J]. Carbon, 1982, 20(5):427-431.
    Wu Q, Pan N, Deng K, et al. Thermogravimetry-mass spectrometry on the pyrolysis process of Lyocell fibers with and without catalyst[J]. Carbohydrate Polymers, 2008, 72(2):222-228.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(469) PDF Downloads(772) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return