ZHANG Xiang-qian, LI Wen-cui, LU An-hui. Designed porous carbon materials for efficient CO2 adsorption and separation. New Carbon Mater., 2015, 30(6): 481-501. doi: 10.1016/S1872-5805(15)60203-7
Citation: ZHANG Xiang-qian, LI Wen-cui, LU An-hui. Designed porous carbon materials for efficient CO2 adsorption and separation. New Carbon Mater., 2015, 30(6): 481-501. doi: 10.1016/S1872-5805(15)60203-7

Designed porous carbon materials for efficient CO2 adsorption and separation

doi: 10.1016/S1872-5805(15)60203-7
Funds:  National Natural Science Foundation of China (21473021);National Program on Key Basic Research Project (2013CB934104);Fundamental Research Funds for the Central Universities (DUT14ZD209).
  • Received Date: 2015-10-05
  • Accepted Date: 2016-01-05
  • Rev Recd Date: 2015-11-30
  • Publish Date: 2015-12-28
  • The emission of CO2 from industry and power plants has become a worldwide problem with a strong link to global warming. The development of novel materials for efficient CO2 capture and utilization is attracting worldwide attention as a hot topic in materials sciences. Among various CO2 adsorbents, porous carbons have proven competitive by virtue of their high specific surface area, tunable pore and surface structures, moderate heat of adsorption, and less sensitivity to humidity than other CO2-philic materials. In this review, we summarize the recent significant advances in porous carbon materials for CO2 adsorption and separation. Strategies to increasethe CO2 capture capability are highlighted. We also briefly discuss the future prospects of porous carbons for CO2 capture.
  • loading
  • Bae Y S, Snurr R Q. Development and evaluation of porous materials for carbon dioxide separation and capture[J]. Angewandte Chemie International Edition, 2011, 50(49): 11586-11596.
    Lu A H, Hao G P. Porous materials for carbon dioxide capture[J]. Annual Reports A: Inorganic Chemistry, 2013, 109: 484-503.
    Lu W, Sculley J P, Yuan D, et al. Polyamine-tethered porous polymer networks for carbon dioxide capture from flue gas[J]. Angewandte Chemie International Edition, 2012, 51(30): 7480-7484.
    Lu A H, Dai S. Porous materials for carbon dioxide capture [M]. Springer: Heidelberg, Germany, 2014.
    Shen W Z, Fan W B. Nitrogen-containing porous carbons: Synthesis and application[J]. Journal of Materials Chemistry A, 2013, 1(4), 999-1013.
    Wang J, Huang L, Yang R, et al. Recent advances in solid sorbents for CO2 capture and new development trends[J]. Energy & Environmental Science, 2014, 7: 3478-3518.
    White R J, Budarin V, Luque R, et al. Tuneable porous carbonaceous materials from renewable resources[J]. Chemical Society Reviews, 2009, 38(12): 3401-3418.
    Gong Y, Wei Z, Wang J, et al. Design and fabrication of hierarchically porous carbon with a template-free method[J]. Scientific Reports, 2014, 4: 6349.
    Ioannidou O, Zabaniotou A. Agricultural residues as precursors for activated carbon production-a review[J]. Renewable and Sustainable Energy Reviews, 2007, 11: 1966-2005.
    Mohamed A R, Mohammadi M, Darzi G N. Preparation of carbon molecular sieve from lignocellulosic biomass: A review[J]. Renewable and Sustainable Energy Reviews, 2010, 14(6): 1591-1599.
    Reddy K S K, Al Shoaibi A, Srinivasakannan C. A comparison of microstructure and adsorption characteristics of activated carbons by CO2 and H3PO4 activation from date palm pits[J]. New Carbon Materials, 2012, 27(5): 344-351. (Reddy K S K, Al Shoaibi A, Srinivasakaman C. 海枣核CO2活化制备活性炭及其结构、吸附性能[J]. 新型炭材料, 2012, 27(5): 344-351.)
    Olivares Marín M, Maroto Valer M M. Development of adsorbents for CO2 capture from waste materials: A review[J]. Greenhouse Gases: Science and Technology, 2012, 2(1): 20-35.
    Wang R, Wang P, Yan X, et al. Promising porous carbon derived from celtuce leaves with outstanding supercapacitance and CO2 capture performance[J]. ACS Applied Materials & Interfaces, 2012, 4(11): 5800-5806.
    Xing W, Liu C, Zhou Z, et al. Superior CO2 uptake of N-doped activated carbon through hydrogen-bonding interaction[J]. Energy & Environmental Science, 2012, 5(6): 7323-7327.
    Titirici M M, Antonietti M, Baccile N. Hydrothermal carbon from biomass: A comparison of the local structure from poly-to monosaccharides and pentoses/hexoses[J]. Green Chemistry, 2008, 10(11): 1204-1212.
    Titirici M M, White R J, Falco C, et al. Black perspectives for a green future: Hydrothermal carbons for environment protection and energy storage[J]. Energy & Environmental Science, 2012, 5(5): 6796-6822.
    Sevilla M, Falco C, Titirici M M, et al. High-performance CO2 sorbents from algae[J]. RSC Advances, 2012, 2(33): 12792-12797.
    Wei H, Deng S, Hu B, et al. Granular bamboo-derived activated carbon for high CO2 adsorption: The dominant role of narrow micropores[J]. Chem Sus Chem, 2012, 5(12): 2354-2360.
    Heidari A, Younesi H, Rashidi A, et al. Evaluation of CO2 adsorption with eucalyptus wood based activated carbon modified by ammonia solution through heat treatment[J]. Chemical Engineering Journal, 2014, 254: 503-513.
    Sevilla M, Fuertes A B. Sustainable porous carbons with a superior performance for CO2 capture[J]. Energy & Environmental Science, 2011, 4(5): 1765-1771.
    Zhu B, Qiu K, Shang C, et al. Naturally derived porous carbon with selective metal-and/or nitrogen-doping for efficient CO2 capture and oxygen reduction[J]. Journal of Materials Chemistry A, 2015, 3(9): 5212-5222.
    Plaza M G, Pevida C, Arias B, et al. Development of low-cost biomass-based adsorbents for postcombustion CO2 capture[J]. Fuel, 2009, 88(12): 2442-2447.
    Parshetti G K, Chowdhury S, Balasubramanian R. Plant derived porous graphene nanosheets for efficient CO2 capture[J]. RSC Advances, 2014, 4(84): 44634-44643.
    Plaza M G, Pevida C, Martín C F, et al. Developing almond shell-derived activated carbons as CO2 adsorbents[J]. Separation and Purification Technology, 2010, 71(1): 102-106.
    Plaza M G, González A S, Pevida C, et al. Valorisation of spent coffee grounds as CO2 adsorbents for postcombustion capture applications[J]. Applied Energy, 2012, 99: 272-279.
    Ello A S, de Souza L K C, Trokourey A, et al. Coconut shell-based microporous carbons for CO2 capture[J]. Microporous and Mesoporous Materials, 2013, 180: 280-283.
    Song J, Shen W, Wang J, et al. Superior carbon-based CO2 adsorbents prepared from poplar anthers[J]. Carbon, 2014, 69: 255-263.
    Wang J, Heerwig A, Lohe M R, et al. Fungi-based porous carbons for CO2 adsorption and separation[J]. Journal of Materials Chemistry, 2012, 22(28): 13911-13913.
    Shen W, He Y, Zhang S, et al. Yeast-based microporous carbon materials for carbon dioxide capture[J]. Chem Sus Chem, 2012, 5(7): 1274-1279.
    Fan X, Zhang L, Zhang G, et al. Chitosan derived nitrogen-doped microporous carbons for high performance CO2 capture[J]. Carbon, 2013, 61: 423-430.
    Lu A H, Schüth F. Nanocasting: A versatile strategy for creating nanostructured porous materials[J]. Advanced Materials, 2006, 18(14): 1793-1805.
    Ma T Y, Liu L, Yuan Z Y. Direct synthesis of ordered mesoporous carbons[J]. Chemical Society Reviews, 2013, 42(9): 3977-4003.
    Ryoo R, Joo S H, Jun S. Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation[J]. The Journal of Physical Chemistry B, 1999, 103(37): 7743-7746.
    Hu Y S, Adelhelm P, Smarsly B M, et al. Synthesis of hierarchically porous carbon monoliths with highly ordered microstructure and their application in rechargeable lithium batteries with high-rate capability[J]. Advanced Functional Materials, 2007, 17(12): 1873-1878.
    Lu A H, Smått J H, Lindén M. Combined surface and volume templating of highly porous nanocast carbon monoliths[J]. Advanced Functional Materials, 2005, 15(5): 865-871.
    Liu N, Yin L, Wang C, et al. Adjusting the texture and nitrogen content of ordered mesoporous nitrogen-doped carbon materials prepared using SBA-15 silica as a template[J]. Carbon, 2010, 48(12): 3579-3591.
    Sánchez-Sánchez A, Suárez-García F, Martínez-Alonso A, et al. Influence of porous texture and surface chemistry on the CO2 adsorption capacity of porous carbons: Acidic and basic site interactions[J]. ACS Applied Materials & Interfaces, 2014, 6(23): 21237-21247.
    Vinu A. Two-dimensional hexagonally-ordered mesoporous carbon nitrides with tunable pore diameter, surface area and nitrogen content[J]. Advanced Functional Materials, 2008, 18(5): 816-827.
    Li Q, Yang J, Feng D, et al. Facile synthesis of porous carbon nitride spheres with hierarchical three-dimensional mesostructures for CO2 capture[J]. Nano Research, 2010, 3(9): 632-642.
    Nishihara H, Kyotani T. Templated nanocarbons for energy storage[J]. Advanced Materials, 2012, 24(33): 4473-4498.
    Pachfule P, Biswal B P, Banerjee R. Control of porosity by using isoreticular zeolitic imidazolate frameworks (IRZIFs) as a template for porous carbon synthesis[J]. Chemistry-A European Journal, 2012, 18(36): 11399-11408.
    DENG Hong-gui, JIN Shuang-ling, ZHAN Liang, et al. Synthesis of porous carbons derived from metal-organic coordination polymers and their adsorption performance for carbon dioxide[J]. New Carbon Materials, 2012, 27(3): 194-199. (邓洪贵, 金双铃, 詹 亮, 等. 以金属框架有机物为模板合成微孔炭及其对CO2的吸附性能[J]. 新型炭材料, 2012, 27(3): 194-199.)
    Wang Q, Xia W, Guo W, et al. Functional zeolitic-imidazolate-framework-templated porous carbon materials for CO2 capture and enhanced capacitors[J]. Chemistry-An Asian journal, 2013, 8(8): 1879-1885.
    Adelhelm P, Hu Y S, Chuenchom L, et al. Generation of hierarchical meso-and macroporous carbon from mesophase pitch by spinodal decomposition using polymer templates[J]. Advanced Materials, 2007, 19(22): 4012-4017.
    Gierszal K P, Jaroniec M. Carbons with extremely large volume of uniform mesopores synthesized by carbonization of phenolic resin film formed on colloidal silica template[J]. Journal of the American Chemical Society, 2006, 128(31): 10026-10027.
    TANG Zhi-hong, HAN Zhuo, YANG Guang-zhi, et al. Preparation of nanoporous carbons with hierarchical pore structure for CO2 capture[J]. New Carbon Materials, 2013, 28(1): 55-60. (唐志红, 韩 卓, 杨光智, 等. CO2捕集用具有多级孔结构纳米孔炭的制备[J]. 新型炭材料, 2013, 28(1): 55-60.)
    Morishita T, Soneda Y, Tsumura T, et al. Preparation of porous carbons from thermoplastic precursors and their performance for electric double layer capacitors[J]. Carbon, 2006, 44(12): 2360-2367.
    Meng L Y, Park S J. MgO-templated porous carbons-based CO2 adsorbents produced by KOH activation[J]. Materials Chemistry and Physics, 2012, 137(1): 91-96.
    Han B H, Zhou W, Sayari A. Direct preparation of nanoporous carbon by nanocasting[J]. Journal of the American Chemical Society, 2003, 125(12): 3444-3445.
    Meng L Y, Park S J. Influence of MgO template on carbon dioxide adsorption of cation exchange resin-based nanoporous carbon[J]. Journal of Colloid and Interface Science, 2012, 366(1): 125-129.
    Zhang S, Chen L, Zhou S, et al. Facile synthesis of hierarchically ordered porous carbon via in situ self-assembly of colloidal polymer and silica spheres and its use as a catalyst support[J]. Chemistry of Materials, 2010, 22(11): 3433-3440.
    Lee J, Kim J, Hyeon T. Recent progress in the synthesis of porous carbon materials[J]. Advanced Materials, 2006, 18(16): 2073-2094.
    Hoheisel T N, Schrettl S, Szilluweit R, et al. Nanostructured carbonaceous materials from molecular precursors[J]. Angewandte Chemie International Edition, 2010, 49(37): 6496-6515.
    Silva A M T, Machado B F, Figueiredo J L, et al. Controlling the surface chemistry of carbon xerogels using HNO3-hydrothermal oxidation[J]. Carbon, 2009, 47(7): 1670-1679.
    Stein A, Wang Z, Fierke M A. Functionalization of porous carbon materials with designed pore architecture[J]. Advanced Materials, 2009, 21(3): 265-293.
    Liang C, Hong K, Guiochon G A, et al. Synthesis of a large-scale highly ordered porous carbon film by self-assembly of block copolymers[J]. Angewandte Chemie International Edition, 2004, 43(43): 5785-5789.
    Liang C, Dai S. Synthesis of mesoporous carbon materials via enhanced hydrogen-bonding interaction[J]. Journal of the American Chemical Society, 2006, 128(16): 5316-5317.
    Saha D, Deng S. Adsorption equilibrium and kinetics of CO2, CH4, N2O, and NH3 on ordered mesoporous carbon[J]. Journal of Colloid and Interface Science, 2010, 345(2): 402-409.
    Wei J, Zhou D, Sun Z, et al. A controllable synthesis of rich nitrogen-doped ordered mesoporous carbon for CO2 capture and supercapacitors[J]. Advanced Functional Materials, 2013, 23(18): 2322-2328.
    Liu L, Wang F Y, Shao G S, et al. A low-temperature autoclaving route to synthesize monolithic carbon materials with an ordered mesostructure[J]. Carbon, 2010, 48(7): 2089-2099.
    Zhao X, Wang A, Yan J, et al. Synthesis and electrochemical performance of heteroatom-incorporated ordered mesoporous carbons[J]. Chemistry of Materials, 2010, 22(19): 5463-5473.
    Hao G P, Li W C, Wang S, et al. Lysine-assisted rapid synthesis of crack-free hierarchical carbon monoliths with a hexagonal array of mesopores[J]. Carbon, 2011, 49(12): 3762-3772.
    Hao G P, Li W C, Qian D, et al. Structurally designed synthesis of mechanically stable poly (benzoxazine-co-resol)-based porous carbon monoliths and their application as high-performance CO2 capture sorbents[J]. Journal of the American Chemical Society, 2011, 133(29): 11378-11388.
    Hao G P, Jin Z Y, Sun Q, et al. Porous carbon nanosheets with precisely tunable thickness and selective CO2 adsorption properties[J]. Energy & Environmental Science, 2013, 6(12): 3740-3747.
    Feng S, Li W, Shi Q, et al. Synthesis of nitrogen-doped hollow carbon nanospheres for CO2 capture[J]. Chemical Communications, 2014, 50(3): 329-331.
    Li W, Zhao D. An overview of the synthesis of ordered mesoporous materials[J]. Chemical Communications, 2013, 49(10): 943-946.
    Wickramaratne N P, Jaroniec M. Activated carbon spheres for CO2 adsorption[J]. ACS Applied Materials & Interfaces, 2013, 5(5): 1849-1855.
    Wang S, Li W C, Hao G P, et al. Temperature-programmed precise control over the sizes of carbon nanospheres based on benzoxazine chemistry[J]. Journal of the American Chemical Society, 2011, 133(39): 15304-15307.
    Wang S, Li W C, Zhang L, et al. Polybenzoxazine-based monodisperse carbon spheres with low-thermal shrinkage and their CO2 adsorption properties[J]. Journal of Materials Chemistry A, 2014, 2(12): 4406-4412.
    Zeng Q, Wu D, Zou C, et al. Template-free fabrication of hierarchical porous carbon based on intra-/inter-sphere crosslinking of monodisperse styrene-divinylbenzene copolymer nanospheres[J]. Chemical Communications, 2010, 46(32): 5927-5929.
    Han F D, Bai Y J, Liu R, et al. Template-free synthesis of interconnected hollow carbon nanospheres for high-performance anode material in lithium-ion batteries[J]. Advanced Energy Materials, 2011, 1(5): 798-801.
    Jalilov A S, Ruan G, Hwang C C, et al. Asphalt-derived high surface area activated porous carbons for carbon dioxide capture[J]. ACS Applied Materials & Interfaces, 2015, 7(2): 1376-1382.
    Pekala R W. Organic aerogels from the polycondensation of resorcinol with formaldehyde[J]. Journal of Materials Science, 1989, 24(9): 3221-3227.
    Fairén-Jiménez D, Carrasco-Marín F, Moreno-Castilla C. Inter-and intra-primary-particle structure of monolithic carbon aerogels obtained with varying solvents[J]. Langmuir, 2008, 24(6): 2820-2825.
    Wan Y, Qian X, Jia N, et al. Direct triblock-copolymer-templating synthesis of highly ordered fluorinated mesoporous carbon[J]. Chemistry of Materials, 2007, 20(3): 1012-1018.
    Sepehri S, Garcia B B, Zhang Q, et al. Enhanced electrochemical and structural properties of carbon cryogels by surface chemistry alteration with boron and nitrogen[J]. Carbon, 2009, 47(6): 1436-1443.
    Hao G P, Li W C, Qian D, et al. Rapid synthesis of nitrogen-doped porous carbon monolith for CO2 capture[J]. Advanced Materials, 2010, 22(7): 853-857.
    Gu J M, Kim W S, Hwang Y K, et al. Template-free synthesis of N-doped porous carbons and their gas sorption properties[J]. Carbon, 2013, 56: 208-217.
    Shen W, Zhang S, He Y, et al. Hierarchical porous polyacrylonitrile-based activated carbon fibers for CO2 capture[J]. Journal of Materials Chemistry, 2011, 21(36): 14036-14040.
    Zhang S, Miran M S, Ikoma A, et al. Protic ionic liquids and salts as versatile carbon precursors[J]. Journal of the American Chemical Society, 2014, 136(5): 1690-1693.
    Jin Z Y, Lu A H, Xu Y Y, et al. Ionic liquid-assisted synthesis of microporous carbon nanosheets for use in high rate and long cycle life supercapacitors[J]. Advanced Materials, 2014, 26(22): 3700-3705.
    Zhang S, Dokko K, Watanabe M. Direct synthesis of nitrogen-doped carbon materials from protic ionic liquids and protic salts: structural and physicochemical correlations between precursor and carbon[J]. Chemistry of Materials, 2014, 26(9): 2915-2926.
    Paraknowitsch J P, Thomas A. Functional carbon materials from ionic liquid precursors[J]. Macromolecular Chemistry and Physics, 2012, 213(10-11): 1132-1145.
    Fechler N, Fellinger T P, Antonietti M. "Salt templating": A simple and sustainable pathway toward highly porous functional carbons from ionic liquids[J]. Advanced Materials, 2013, 25(1): 75-79.
    Wang X, Dai S. Ionic liquids as versatile precursors for functionalized porous carbon and carbon-oxide composite materials by confined carbonization[J]. Angewandte Chemie International Edition, 2010, 49(37): 6664-6668.
    Lee J S, Wang X, Luo H, et al. Facile ionothermal synthesis of microporous and mesoporous carbons from task specific ionic liquids[J]. Journal of the American Chemical Society, 2009, 131(13): 4596-4597.
    Paraknowitsch J P, Zhang J, Su D, et al. Ionic liquids as precursors for nitrogen-doped graphitic carbon[J]. Advanced Materials, 2010, 22(1): 87-92.
    Abbott A P, Capper G, Davies D L, et al. Novel solvent properties of choline chloride/urea mixtures[J]. Chemical Communications, 2003 (1): 70-71.
    Francisco M, van den Bruinhorst A, Kroon M C. Low-transition-temperature mixtures (LTTMs): A new generation of designer solvents[J]. Angewandte Chemie International Edition, 2013, 52(11): 3074-3085.
    Carriazo D, Gutiérrez M C, Ferrer M L, et al. Resorcinol-based deep eutectic solvents as both carbonaceous precursors and templating agents in the synthesis of hierarchical porous carbon monoliths[J]. Chemistry of Materials, 2010, 22(22): 6146-6152.
    Patino J, Gutiérrez M C, Carriazo D, et al. Deep eutectic assisted synthesis of carbon adsorbents highly suitable for low-pressure separation of CO2-CH4 gas mixtures[J]. Energy & Environmental Science, 2012, 5(9): 8699-8707.
    Patino J, Gutiérrez M C, Carriazo D, et al. DES assisted synthesis of hierarchical nitrogen-doped carbon molecular sieves for selective CO2 versus N2 adsorption[J]. Journal of Materials Chemistry A, 2014, 2(23): 8719-8729.
    Gutiérrez M C, Rubio F, del Monte F. Resorcinol-formaldehyde polycondensation in deep eutectic solvents for the preparation of carbons and carbon-carbon nanotube composites[J]. Chemistry of Materials, 2010, 22(9): 2711-2719.
    Leventis N, Sotiriou-Leventis C, Chandrasekaran N, et al. Multifunctional polyurea aerogels from isocyanates and water. a structure-property case study[J]. Chemistry of Materials, 2010, 22(24): 6692-6710.
    Chidambareswarapattar C, Larimore Z, Sotiriou-Leventis C, et al. One-step room-temperature synthesis of fibrous polyimide aerogels from anhydrides and isocyanates and conversion to isomorphic carbons[J]. Journal of Materials Chemistry, 2010, 20(43): 9666-9678.
    Gao X, Zou X, Ma H, et al. Highly selective and permeable porous organic framework membrane for CO2 capture[J]. Advanced Materials, 2014, 26(22): 3644-3648.
    Ma T Y, Dai S, Jaroniec M, et al. Metal-organic framework derived hybrid Co3O4-carbon porous nanowire arrays as reversible oxygen evolution electrodes[J]. Journal of the American Chemical Society, 2014, 136(39): 13925-13931.
    Amali A J, Sun J K, Xu Q. From assembled metal-organic framework nanoparticles to hierarchically porous carbon for electrochemical energy storage[J]. Chemical Communications, 2014, 50(13): 1519-1522.
    Zhang W, Wu Z Y, Jiang H L, et al. Nanowire-directed templating synthesis of metal-organic framework nanofibers and their derived porous doped carbon nanofibers for enhanced electrocatalysis[J]. Journal of the American Chemical Society, 2014, 136(41): 14385-14388.
    Fracaroli A M, Furukawa H, Suzuki M, et al. Metal-organic frameworks with precisely designed interior for carbon dioxide capture in the presence of water[J]. Journal of the American Chemical Society, 2014, 136(25): 8863-8866.
    Hu M, Reboul J, Furukawa S, et al. Direct carbonization of Al-based porous coordination polymer for synthesis of nanoporous carbon[J]. Journal of the American Chemical Society, 2012, 134(6): 2864-2867.
    Chaikittisilp W, Hu M, Wang H, et al. Nanoporous carbons through direct carbonization of a zeolitic imidazolate framework for supercapacitor electrodes[J]. Chemical Communications, 2012, 48(58): 7259-7261.
    Yang S J, Kim T, Im J H, et al. MOF-derived hierarchically porous carbon with exceptional porosity and hydrogen storage capacity[J]. Chemistry of Materials, 2012, 24(3): 464-470.
    Lim S, Suh K, Kim Y, et al. Porous carbon materials with a controllable surface area synthesized from metal-organic frameworks[J]. Chemical Communications, 2012, 48(60): 7447-7449.
    Srinivas G, Krungleviciute V, Guo Z X, et al. Exceptional CO2 capture in a hierarchically porous carbon with simultaneous high surface area and pore volume[J]. Energy & Environmental Science, 2014, 7(1): 335-342.
    Ben T, Li Y, Zhu L, et al. Selective adsorption of carbon dioxide by carbonized porous aromatic framework (PAF)[J]. Energy & Environmental Science, 2012, 5(8): 8370-8376.
    Li J R, Kuppler R J, Zhou H C. Selective gas adsorption and separation in metal-organic frameworks[J]. Chemical Society Reviews, 2009, 38(5): 1477-1504.
    Chmiola J, Largeot C, Taberna P L, et al. Monolithic carbide-derived carbon films for micro-supercapacitors[J]. Science, 2010, 328(5977): 480-483.
    Presser V, McDonough J, Yeon S H, et al. Effect of pore size on carbon dioxide sorption by carbide derived carbon[J]. Energy & Environmental Science, 2011, 4(8): 3059-3066.
    Zhang Z, Zhou J, Xing W, et al. Critical role of small micropores in high CO2 uptake[J]. Physical Chemistry Chemical Physics, 2013, 15(7), 2523-2529.
    Yu J, Guo M, Muhammad F, et al. One-pot synthesis of highly ordered nitrogen-containing mesoporous carbon with resorcinol-urea-formaldehyde resin for CO2 capture[J]. Carbon, 2014, 69: 502-514.
    Yu J, Guo M, Muhammad F, et al. Simple fabrication of an ordered nitrogen-doped mesoporous carbon with resorcinol-melamine-formaldehyde resin[J]. Microporous and Mesoporous Materials, 2014, 190: 117-127.
    Jin Z Y, Xu Y Y, Sun Q, et al. Evidence of microporous carbon nanosheets showing fast kinetics in both gas phase and liquid phase environments[J]. Small, 2015, 11(38): 5151-5156.
    Qian D, Lei C, Wang E M, et al. A method for creating microporous carbon materials with excellent CO2-adsorption capacity and selectivity[J]. Chem Sus Chem, 2014, 7(1): 291-298.
    Liu L, Deng Q F, Hou X X, et al. User-friendly synthesis of nitrogen-containing polymer and microporous carbon spheres for efficient CO2 capture[J]. Journal of Materials Chemistry, 2012, 22(31): 15540-15548.
    Zhang X, Lin D, Chen W. Nitrogen-doped porous carbon prepared from a liquid carbon precursor for CO2 adsorption[J]. RSC Advances, 2015, 5(56): 45136-45143.
    Qian D, Hao G, Li W. Synthesis of a nitrogen-doped porous carbon monolith and its use for CO2 capture[J]. Carbon, 2013, 64: 557-558.
    Thote J A, Iyer K S, Chatti R, et al. In situ nitrogen enriched carbon for carbon dioxide capture[J]. Carbon, 2010, 48(2): 396-402.
    Zhong M, Natesakhawat S, Baltrus J P, et al. Copolymer-templated nitrogen-enriched porous nanocarbons for CO2 capture[J]. Chemical Communications, 2012, 48(94): 11516-11518.
    Zhao Y, Zhao L, Yao K X, et al. Novel porous carbon materials with ultrahigh nitrogen contents for selective CO2 capture[J]. Journal of Materials Chemistry, 2012, 22(37): 19726-19731.
    Nandi M, Okada K, Dutta A, et al. Unprecedented CO2 uptake over highly porous N-doped activated carbon monoliths prepared by physical activation[J]. Chemical Communications, 2012, 48(83): 10283-10285.
    Chen C, Kim J, Ahn W S. Efficient carbon dioxide capture over a nitrogen-rich carbon having a hierarchical micro-mesopore structure[J]. Fuel, 2012, 95: 360-364.
    Wickramaratne N P, Jaroniec M. Importance of small micropores in CO2 capture by phenolic resin-based activated carbon spheres[J]. Journal of Materials Chemistry A, 2013, 1(1): 112-116.
    Bai R, Yang M, Hu G, et al. A new nanoporous nitrogen-doped highly-efficient carbonaceous CO2 sorbent synthesized with inexpensive urea and petroleum coke[J]. Carbon, 2015, 81: 465-473.
    Sevilla M, Valle-Vigón P, Fuertes A B. N-doped polypyrrole-based porous carbons for CO2 capture[J]. Advanced Functional Materials, 2011, 21(14): 2781-2787.
    Przepiórski J, Skrodzewicz M, Morawski A W. High temperature ammonia treatment of activated carbon for enhancement of CO2 adsorption[J]. Applied Surface Science, 2004, 225(1): 235-242.
    Pevida C, Plaza M G, Arias B, et al. Surface modification of activated carbons for CO2 capture[J]. Applied Surface Science, 2008, 254(22): 7165-7172.
    Plaza M G, Rubiera F, Pis J J, et al. Ammoxidation of carbon materials for CO2 capture[J]. Applied Surface Science, 2010, 256(22): 6843-6849.
    Xia Y, Zhu Y, Tang Y. Preparation of sulfur-doped microporous carbons for the storage of hydrogen and carbon dioxide[J]. Carbon, 2012, 50(15): 5543-5553.
    Liu Y, Wilcox J. Effects of surface heterogeneity on the adsorption of CO2 in microporous carbons[J]. Environmental Science & Technology, 2012, 46(3): 1940-1947.
    Kumar K V, Müller E A, Rodríguez-Reinoso F. Effect of pore morphology on the adsorption of methane/hydrogen mixtures on carbon micropores[J]. The Journal of Physical Chemistry C, 2012, 116(21): 11820-11829.
    Palmer J C, Moore J D, Roussel T J, et al. Adsorptive behavior of CO2, CH4 and their mixtures in carbon nanospace: a molecular simulation study[J]. Physical Chemistry Chemical Physics, 2011, 13(9): 3985-3996.
    Liu Y, Wilcox J. Molecular simulation of CO2 adsorption in micro-and mesoporous carbons with surface heterogeneity[J]. International Journal of Coal Geology, 2012, 104: 83-95.
    Lu X, Jin D, Wei S, et al. Competitive adsorption of a binary CO2-CH4 mixture in nanoporous carbons: effects of edge-functionalization[J]. Nanoscale, 2015, 7(3): 1002-1012.
    Zhao Y, Liu X, Yao K X, et al. Superior capture of CO2 achieved by introducing extra-framework cations into N-doped microporous carbon[J]. Chemistry of Materials, 2012, 24(24): 4725-4734.
    Xia Y, Zhu Y, Tang Y. Preparation of sulfur-doped microporous carbons for the storage of hydrogen and carbon dioxide[J]. Carbon, 2012, 50(15): 5543-5553.
    Babarao R, Dai S, Jiang D. Nitrogen-doped mesoporous carbon for carbon capture-a molecular simulation study[J]. The Journal of Physical Chemistry C, 2012, 116(12): 7106-7110.
    Gao B, Zhao J, Cai Q, et al. Doping of calcium in C60 fullerene for enhancing CO2 capture and N2O transformation: A theoretical study[J]. The Journal of Physical Chemistry A, 2011, 115(35): 9969-9976.
    Sitthikhankaew R, Chadwick D, Assabumrungrat S, et al. Performance of sodium-impregnated activated carbons toward low and high temperature H2S adsorption[J]. Chemical Engineering Communications, 2014, 201(2): 257-271.
    Bhagiyalakshmi M, Lee J Y, Jang H T. Synthesis of mesoporous magnesium oxide: Its application to CO2 chemisorption[J]. International Journal of Greenhouse Gas Control, 2010, 4(1): 51-56.
    Bhagiyalakshmi M, Hemalatha P, Ganesh M, et al. A direct synthesis of mesoporous carbon supported MgO sorbent for CO2 capture[J]. Fuel, 2011, 90(4): 1662-1667.
    Czyzewski A, Kapica J, Moszyński D, et al. On competitive uptake of SO2 and CO2 from air by porous carbon containing CaO and MgO[J]. Chemical Engineering Journal, 2013, 226: 348-356.
    Zhang Z, Zhu C, Sun N, et al. One-pot solvent-free synthesis of nitrogen and magnesium codoped mesoporous carbon composites for CO2 capture[J]. The Journal of Physical Chemistry C, 2015, 119(17): 9302-9310.
    Kim Y K, Kim G M, Lee J W. Highly porous N-doped carbons impregnated with sodium for efficient CO2 capture[J]. Journal of Materials Chemistry A, 2015, 3(20): 10919-10927.
    Zhao Y, Liu X, Yao K X, et al. Superior capture of CO2 achieved by introducing extra-framework cations into N-doped microporous carbon[J]. Chemistry of Materials, 2012, 24(24): 4725-4734.
    Qian D, Lei C, Hao G P, et al. Synthesis of hierarchical porous carboappn monoliths with incorporated metal-organic frameworks for enhancing volumetric based CO2 capture capability[J]. ACS Applied Materials & Interfaces, 2012, 4(11): 6125-6132.
    Yue M B, Chun Y, Cao Y, et al. CO2 capture by as-prepared SBA-15 with an occluded organic template[J]. Advanced Functional Materials, 2006, 16(13): 1717-1722.
    Zhao L, Bacsik Z, Hedin N, et al. Carbon dioxide capture on amine-rich carbonaceous materials derived from glucose[J]. Chem Sus Chem, 2010, 3(7): 840-845.
    Hwang C C, Jin Z, Lu W, et al. In situ synthesis of polymer-modified mesoporous carbon CMK-3 composites for CO2 sequestration[J]. ACS Applied Materials & Interfaces, 2011, 3(12): 4782-4786.
    Zhao Y, Ding H, Zhong Q. Preparation and characterization of aminated graphite oxide for CO2 capture[J]. Applied Surface Science, 2012, 258(10): 4301-4307.
    Koenig S P, Wang L, Pellegrino J, et al. Selective molecular sieving through porous graphene[J]. Nature Nanotechnology, 2012, 7(11): 728-732.
    Liu H, Cooper V R, Dai S, et al. Windowed carbon nanotubes for efficient CO2 removal from natural gas[J]. The Journal of Physical Chemistry Letters, 2012, 3(22): 3343-3347.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(941) PDF Downloads(763) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return