LIU Guo-qiang, WAN Ming-xi, HUANG Zheng-hong, KANG Fei-yu. Preparation of graphene/metal-organic composites and their adsorption performance for benzene and ethanol. New Carbon Mater., 2015, 30(6): 566-571. doi: 10.1016/S1872-5805(15)60205-0
Citation: LIU Guo-qiang, WAN Ming-xi, HUANG Zheng-hong, KANG Fei-yu. Preparation of graphene/metal-organic composites and their adsorption performance for benzene and ethanol. New Carbon Mater., 2015, 30(6): 566-571. doi: 10.1016/S1872-5805(15)60205-0

Preparation of graphene/metal-organic composites and their adsorption performance for benzene and ethanol

doi: 10.1016/S1872-5805(15)60205-0
Funds:  National High Technology Research and Development Program of China (2010AA064907).
  • Received Date: 2015-10-26
  • Accepted Date: 2016-01-05
  • Rev Recd Date: 2015-12-08
  • Publish Date: 2015-12-28
  • Graphene/metal-organic composites were synthesized by a solvothermal method and characterized by nitrogen adsorption, SEM and IR and their adsorption properties for benzene and ethanol were investigated. It was found that the surface area and pore volume both have maximum values for a graphene oxide (GO) percentage of 5.25 wt%. The composites have high adsorption capacities for both benzene and ethanol, and the maximum uptakes reach 72 and 77 cm3/g, respectively. The adsorption capacities of volatile organic compounds are determined by both the pore structure and the surface properties. The maximum ethanol adsorption capacity for the composite with a GO percentage of 3.5 wt% is due to its abundant oxygen-containing functional groups.
  • loading
  • Yamamoto T, Kataoka S,Ohmori T. Characterization of carbon cryogel microspheres as adsorbents for VOC[J]. Journal of Hazardous Materials, 2010, 177(1-3): 331-335.
    Lillo-Rodenas M A, Cazorla-Amoros D, Linares-Solano A. Behaviour of activated carbons with different pore size distributions and surface oxygen groups for benzene and toluene adsorption at low concentrations[J]. Carbon, 2005, 43(8): 1758-1767.
    Mu B, Walton K S. Adsorption equilibrium of methane and carbon dioxide on porous metal-organic framework Zn-BTB[J]. Adsorption-Journal of the International Adsorption Society, 2011, 17(5): 777-782.
    Diaz E, Ordonez S, Vega A. Adsorption of volatile organic compounds onto carbon nanotubes, carbon nanofibers, and high-surface-area graphites[J]. Journal of Colloid and Interface Science, 2007, 305(1): 7-16.
    Li L, Liu S, Liu J. Surface modification of coconut shell based activated carbon for the improvement of hydrophobic VOC removal[J]. Journal of Hazardous Materials, 2011, 192(2): 683-690.
    Barakat T, Rooke J C, Tidahy H L, et al. Noble-metal-based catalysts supported on zeolites and macro-mesoporous metal oxide supports for the total oxidation of volatile organic compounds[J]. Chemsuschem, 2011, 4(10): 1420-1430.
    Silva B, Figueiredo H, Santos V P, et al. Reutilization of Cr-Y zeolite obtained by biosorption in the catalytic oxidation of volatile organic compounds[J]. Journal of Hazardous Materials, 2011, 192(2): 545-553.
    Wang D, McLaughlin E, Pfeffer R, et al. Adsorption of organic compounds in vapor, liquid, and aqueous solution phases on hydrophobic aerogels[J]. Industrial & Engineering Chemistry Research, 2011, 50(21): 12177-12185.
    Uguina M A, Sotelo J L, Delgado J A, et al. Adsorption of methyl ethyl ketone and trichloroethene from aqueous solutions onto silicalite fixed-bed adsorbers[J]. Separation and Purification Technology, 2005, 42(1): 91-99.
    Koh S M, Dixon J B. Preparation and application of organo-minerals as sorbents of phenol, benzene and toluene[J]. Applied Clay Science, 2001, 18(3-4): 111-122.
    Zhao Z, Li X, Li Z. Adsorption equilibrium and kinetics of p-xylene on chromium-based metal organic framework MIL-101[J]. Chemical Engineering Journal, 2011, 173(1): 150-157.
    Kitagawa S, Kitaura R, Noro S. Functional porous coordination polymers[J]. Angewandte Chemie-International Edition, 2004, 43(18): 2334-2375.
    Furukawa H, Ko N, Go Y B, et al. Ultrahigh porosity in metal-organic frameworks[J]. Science, 2010, 329(5990): 424-428.
    Petit C, Bandosz T J. MOF-graphite oxide composites: Combining the uniqueness of graphene layers and metal-organic frameworks[J]. Advanced Materials, 2009, 21(46): 4753-4757.
    Petit C, Bandosz T J. MOF-graphite oxide nanocomposites: Surface characterization and evaluation as adsorbents of ammonia[J]. Journal of Materials Chemistry, 2009, 19(36): 6521-6528.
    Petit C, Bandosz T J. Enhanced adsorption of ammonia on metal-organic framework/graphite oxide composites: Analysis of surface interactions[J]. Advanced Functional Materials, 2010, 20(1): 111-118.
    Petit C, Mendoza B, Bandosz T J. Reactive adsorption of ammonia on Cu-based MOF/graphene composites[J]. Langmuir, 2010, 26(19): 15302-15309.
    Petit C, Bandosz T J. Synthesis, characterization, and ammonia adsorption properties of mesoporous metal-organic framework (MIL(Fe))-graphite oxide composites: Exploring the limits of materials fabrication[J]. Advanced Functional Materials, 2011, 21(11): 2108-2117.
    Petit C, Huang L, Jagiello J, et al. Toward understanding reactive adsorption of ammonia on cu-MOF/graphite oxide nanocomposites[J]. Langmuir, 2011, 27(21): 13043-13051.
    Petit C, Mendoza B,Bandosz T J. Hydrogen sulfide adsorption on MOFs and MOF/graphite oxide composites[J]. Chemphyschem, 2010, 11(17): 3678-3684.
    Levasseur B, Petit C,Bandosz T J. Reactive adsorption of NO2 on copper-based metal-organic framework and graphite oxide/metal-organic framework composites[J]. ACS Applied Materials & Interfaces, 2010, 2(12): 3606-3613.
    Britt D, Tranchemontagne D, Yaghi O M. Metal-organic frameworks with high capacity and selectivity for harmful gases[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(33): 11623-11627.
    Gu Z-Y, Jiang D-Q, Wang H-F, et al. Adsorption and separation of xylene isomers and ethylbenzene on two Zn-terephthalate metal-organic frameworks[J]. Journal of Physical Chemistry C, 2010, 114(1): 311-316.
    Tang Z, Shen S, Zhuang J, et al. Noble-metal-promoted three-dimensional macroassembly of single-layered graphene oxide[J]. Angewandte Chemie-International Edition, 2010, 49(27): 4603-4607.
    Huang Z-H, Liu G, Kang F. Glucose-promoted Zn-based metal-organic framework/graphene oxide composites for hydrogen sulfide removal[J]. Acs Applied Materials & Interfaces, 2012, 4(9): 4942-4947.
    Rouquerol F, Rouquerol J, Sing K. Adsorption by powders and porous solids[J]. London: Academic Press, 1999: 18-20.
    Lua A C, Yang T. Effect of activation temperature on the textural and chemical properties of potassium hydroxide activated carbon prepared from pistachio-nut shell[J]. Journal of Colloid and Interface Science, 2004, 274(2): 594-601.
    Zheng M, Liu Y, Jiang K, et al. Alcohol-assisted hydrothermal carbonization to fabricate spheroidal carbons with a tunable shape and aspect ratio[J]. Carbon, 2010, 48(4): 1224-1233.
    Sevilla M, Fuertes A B. Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides[J]. Chemistry-a European Journal, 2009, 15(16): 4195-4203.
    Ellison M D, Morris S T, Sender M R, et al. Infrared and computational studies of the adsorption of methanol and ethanol on single-walled carbon nanotubes[J]. Journal of Physical Chemistry C, 2007, 111(49): 18127-18134.
    Seredych M, Tamashausky A V, Bandosz T J. Graphite oxides obtained from porous graphite: The role of surface chemistry and texture in ammonia retention at ambient conditions[J]. Advanced Functional Materials, 2010, 20(10): 1670-1679.
    Xu Y, Sheng K, Li C, et al. Self-assembled graphene hydrogel via a one-step hydrothermal process[J]. ACS Nano, 2010, 4(7): 4324-4330.
    Hafizovic J, Bjorgen M, Olsbye U, et al. The inconsistency in adsorption properties and powder XRD data of MOF-5 is rationalized by framework interpenetration and the presence of organic and inorganic species in the nanocavities[J]. Journal of the American Chemical Society, 2007, 129(12): 3612-3620.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(1019) PDF Downloads(761) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return