Sushil R. Kanel, Heath Misak, Dhriti Nepal, Shankar Mall, Seth W. Brittle, Ioana Sizemore, David M. Kempisty, Mark N. Goltz. The use of carbon nanotube yarn as a filter medium to treat nitroaromatic-contaminated water. New Carbon Mater., 2016, 31(4): 415-423. doi: 10.1016/S1872-5805(16)60021-5
Citation: Sushil R. Kanel, Heath Misak, Dhriti Nepal, Shankar Mall, Seth W. Brittle, Ioana Sizemore, David M. Kempisty, Mark N. Goltz. The use of carbon nanotube yarn as a filter medium to treat nitroaromatic-contaminated water. New Carbon Mater., 2016, 31(4): 415-423. doi: 10.1016/S1872-5805(16)60021-5

The use of carbon nanotube yarn as a filter medium to treat nitroaromatic-contaminated water

doi: 10.1016/S1872-5805(16)60021-5
  • Received Date: 2016-05-30
  • Accepted Date: 2016-08-29
  • Rev Recd Date: 2016-07-30
  • Publish Date: 2016-08-28
  • Carbon nanotube yarn (CNTY) is a promising material for the removal of organic contaminants from aqueous waste streams owing to its extraordinary mechanical strength, chemical stability, thermal stability and high surface area. CNTY was used to treat water contaminated with a model nitroaromatic compound, 2,4-dinitrotoluene (DNT). The isotherms and kinetics of DNT adsorption onto CNTY were investigated. The adsorption capacities of DNT were compared with the literature values of alternative sorbents. SEM-EDX, HR-TEM, Raman spectroscopy and XPS were used to characterize the size, surface morphology and surface chemistry of the CNTY before and after DNT adsorption. Results indicate that adsorption isotherm of DNT onto CNTY could be fitted by the Freundlich isotherm with a Freundlich constant, KF, of 55.0 mg/g (L/mg)1/n and a Freundlich exponent, 1/n, of 0.737. Adsorption kinetics can be formulated by the pseudo-second order kinetic model. This study demonstrates the ability of CNTY to remove organic contaminants from water.
  • loading
  • Pal S, Joardar J, Song JM. Removal of E. coli from water using surface-modified activated carbon filter media and its performance over an extended use[J]. Environmental Science & Technology, 2006, 40(19):6091-6097.
    Liu XT, Wang MS, Zhang SJ, et al. Application potential of carbon nanotubes in water treatment:A review[J]. J Environ Sci, 2013, 25(7):1263-1280.
    Nepal D, Geckeler KE. pH-sensitive dispersion and debundling of single-walled carbon nanotubes:Lysozyme as a tool[J]. Small, 2006, 2(3):406-412.
    Nepal D, Geckeler KE. Proteins and carbon nanotubes:Close encounter in water[J]. Small, 2007, 3(7):1259-1265.
    Kim DS, Nepal D, Geckeler KE. Individualization of single-walled carbon nanotubes:Is the solvent important[J]. Small, 2005, 1(11):1117-1124.
    Wang HT, Lin KY, Jing BX, Krylova G, et al. Removal of oil droplets from contaminated water using magnetic carbon nanotubes[J]. Water Res, 2013, 47(12):4198-4205.
    Basu-Dutt S, Minus ML, Jain R, et al. Chemistry of carbon nanotubes for everyone[J]. Journal of Chemical Education, 2012, 89(2):221-229.
    Chun K-Y, Kim SH, Shin MK, et al. Hybrid carbon nanotube yarn artificial muscle inspired by spider dragline silk[J]. Nature Communications, 2014, 5(2):163-180.
    Mubarak NM, Sahu JN, Abdullah EC, et al. Removal of heavy metals from wastewater using carbon nanotubes[J]. Sep Purif Rev, 2014, 43(4):311-338.
    Nepal D, Geckeler K. Functional Nanomaterials. In:Geckeler K, Rogenburg E, editors. Functionalization of Carbon Nanotubes[M]. Valencia:American Scientific Publishers, 2006:57-79.
    Wei G, Yu H, Quan X, et al. Constructing all carbon nanotube hollow fiber membranes with improved performance in separation and antifouling for water treatment[J]. Environmental Science & Technology, 2014, 48(14):8062-8068.
    Wang S, Zhai Y-Y, Gao Q, et al. Highly Efficient removal of acid red 18 from aqueous solution by magnetically retrievable chitosan/carbon nanotube:Batch Study, Isotherms, Kinetics, and Thermodynamics[J]. Journal of Chemical & Engineering Data, 2013, 59(1):39-51.
    Fan X, Restivo J, Órfão JJM, et al. The role of multiwalled carbon nanotubes (MWCNTs) in the catalytic ozonation of atrazine[J]. Chem Eng J, 2014, 241(0):66-76.
    Wirth CT, Bayer BC, Gamalski AD, et al. The phase of iron catalyst nanoparticles during carbon nanotube growth[J]. Chemistry of Materials, 2012, 24(24):4633-4640.
    Nepal D. Dispersion, individualization and novel supramolecular adducts of carbon nanotubes[D]. Gwangju, South Korea:Gwangju Institute of Science and Technology, Ph.D. Thesis, 2006.
    Sheng GD, Shao DD, Ren XM, et al. Kinetics and thermodynamics of adsorption of ionizable aromatic compounds from aqueous solutions by as-prepared and oxidized multiwalled carbon nanotubes[J]. Journal of Hazardous Materials, 2010, 178(1-3):505-516.
    Gui X, Wei J, Wang K, et al. Carbon nanotube sponges[J]. Advanced Materials, 2010, 22(5):617-621.
    Camilli L, Pisani C, Gautron E, et al. A three-dimensional carbon nanotube network for water treatment[J]. Nanotechnology, 2014, 25(6):65701-65707.
    Hashim DP, Narayanan NT, Romo-Herrera JM, et al. Covalently bonded three-dimensional carbon nanotube solids via boron induced nanojunctions[J]. Scientific Rep, 2012, 2(363), doi: 10.1038/srep00363.
    Ma W, Liu L, Yang R, et al. Monitoring a micromechanical process in macroscale carbon nanotube films and fibers[J]. Advanced Materials, 2009, 21(5):603-608.
    Upadhyayula VKK, Deng S, Mitchell MC, et al. Application of carbon nanotube technology for removal of contaminants in drinking water:A review[J]. Science of The Total Environment, 2009, 408(1):1-13.
    O'Mahony AM, Wang J. Nanomaterial-based electrochemical detection of explosives:a review of recent developments[J]. Anal Methods, 2013, 5(17):4296-4309.
    Wu AS, Chou T-W, Gillespie JW, et al. Electromechanical response and failure behaviour of aerogel-spun carbon nanotube fibres under tensile loading[J]. Journal of Materials Chemistry, 2012, 22(14):6792-6798.
    Randtke SJ, Snoeyink VL. Evaluating GAC adsorptive capacity[J]. J Am Water Work Assoc, 1983, 75(8):406-413.
    Kashiwagi T, Grulke E, Hilding J. Thermal degradation and flammability properties of poly(propylene)/carbon nanotube composites[J]. Macromol Rapid Commun, 2002, 23(13):761-765.
    Shen X-E, Shan X-Q, Dong D-M, et al. Kinetics and thermodynamics of sorption of nitroaromatic compounds to as-grown and oxidized multiwalled carbon nanotubes[J]. Journal of Colloid and Interface Science, 2009, 330(1):1-8.
    Azizian S, Yahyaei B. Adsorption of 18-crown-6 from aqueous solution on granular activated carbon:A kinetic modeling study[J]. Journal of Colloid and Interface Science, 2006, 299(1):112-115.
    Kanel SR, Manning B, Charlet L, et al. Removal of arsenic(Ⅲ) from groundwater by nanoscale zero-valent iron[J]. Environmental Science & Technology, 2005, 39(5):1291-1298.
    Kanel SR, Choi H, Kim J-Y, et al. Removal of arsenic(Ⅲ) from groundwater using low-cost industrial by-products-Blast furnace slag[J]. Water Quality Research Journal of Canada, 2006, 41(2):130-139.
    Tian X, Zhou S, Zhang Z, et al. Metal impurities dominate the sorption of a commercially available carbon nanotube for Pb(Ⅱ) from water[J]. Environmental Science & Technology, 2010, 44(21):8144-8149.
    Graupner R. Raman spectroscopy of covalently functionalized single-wall carbon nanotubes[J]. J Raman Spectrosc, 2007, 38(6):673-683.
    Osswald S, Havel M, Gogotsi Y. Monitoring oxidation of multiwalled carbon nanotubes by Raman spectroscopy[J]. J Raman Spectrosc, 2007, 38(6):728-736.
    Sato-Berrú RY, Basiuk EV, Saniger JM. Application of principal component analysis to discriminate the Raman spectra of functionalized multiwalled carbon nanotubes[J]. J Raman Spectrosc, 2006, 37(11):1302-1306.
    Valcárcel M, Cárdenas S, Simonet BM. Role of carbon nanotubes in analytical science[J]. Analytical Chemistry, 2007, 79(13):4788-4797.
    Bersani D, Lottici PP, Montenero A. Micro-Raman investigation of iron oxide films and powders produced by sol-gel syntheses[J]. J Raman Spectrosc, 1999, 30(5):355-360.
    De Faria DLA, Venâncio Silva S, de Oliveira MT. Raman microspectroscopy of some iron oxides and oxyhydroxides[J]. J Raman Spectrosc, 1997, 28(11):873-878.
    Choi JH, Nguyen FT, Barone PW, et al. Multimodal biomedical imaging with asymmetric single-walled carbon nanotube/iron oxide nanoparticle complexes[J]. Nano Letters, 2007, 7(4):861-867.
    Hung W-C, Elias G, Wai CM. Interaction of aromatic derivatives with single-walled carbon nanotubes[J]. ChemPhysChem, 2010, 11(16):3439-3446.
    Menanteau T, Levillain E, Breton T. Spontaneous grafting of nitrophenyl groups on carbon:Effect of radical scavenger on organic layer formation[J]. Langmuir, 2014, 30(26):7913-7918.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article Views(387) PDF Downloads(548) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return