ZHANG Ji-cheng, TANG Yong-jian, YI Yong, MA Kang-fu, ZHOU Min-jie, WU Wei-dong, WANG Chao-yang. Large-scale synthesis of novel vertically-aligned helical carbon nanotube arrays. New Carbon Mater., 2016, 31(6): 568-573. doi: 10.1016/S1872-5805(16)60032-X
Citation: ZHANG Ji-cheng, TANG Yong-jian, YI Yong, MA Kang-fu, ZHOU Min-jie, WU Wei-dong, WANG Chao-yang. Large-scale synthesis of novel vertically-aligned helical carbon nanotube arrays. New Carbon Mater., 2016, 31(6): 568-573. doi: 10.1016/S1872-5805(16)60032-X

Large-scale synthesis of novel vertically-aligned helical carbon nanotube arrays

doi: 10.1016/S1872-5805(16)60032-X
Funds:  National Natural Science Foundation of China (60908023, 11075143/A050609); Key Laboratory of Ultra-Precision Machining Technology Foundation of CAEP (ZZ15003).
  • Received Date: 2016-09-29
  • Accepted Date: 2016-12-26
  • Rev Recd Date: 2016-12-03
  • Publish Date: 2016-12-28
  • The large-scale synthesis of vertically-aligned carbon nanotube arrays with different helical pitches and diameters was achieved using the floating catalyst method. Results indicate that they are aligned perpendicular to the substrate surface and have a well-graphitized structure and their growth is accompanied by the production of pentagonal, heptagonal and hexagonal carbon rings. The hexagonal carbon ring is the basic structure unit to form the graphite lattice. When paired pentagon-heptagon atomic rings arrange themselves periodically within the hexagonal carbon network, helical carbon nanotubes are formed. The growth rate of the helical carbon nanotubes is about 4.5mg/cm2·h.
  • loading
  • Zhang M, Fang S L, Zakhidov A A, et al. Strong, transparent, multifunctional, carbon nanotube sheets[J]. Science, 2005, 309(5738):1215-1219.
    Michael F L, De Volder, Sameh H, et al. Carbon nanotubes:Present and future commercial applications[J]. Science, 2013, 339:535-539.
    Pan J Y, Chen C Y, Gao Y L, et al. Improved field emission characteristics of screen-printed CNT-FED cathode by interfusing Fe/Ni nano-grains[J]. Displays, 2009, (30):114-118.
    XU Yao, ZHAN Liang, WANG Yun, et al. Fluorinated graphene as a cathode material for high performance primary lithium ion batteries[J]. New Carbon Materials, 2015, 30(1):79-85.
    Phaedon Avouris. Carbon nanotube electronics[J]. Chemical Physics, 2002, 281(2-3):429-445.
    ZHENG Wei, QI Tao, ZHANG Yong-chao, et al. Fabrication and characterization of a multi-walled carbon nanotube-based counter electrode for dye-sensitized solar cells[J]. New Carbon Materials, 2015, 30(5):391-396.
    Nicole Grobert. Carbon nanotubes-becoming clean[J]. Materials Today, 2007, 10(1-2):28-35.
    Qin Y, Kim Y, Zhang L B. Preparation and elastic properties of helical nanotubes obtained by atomic layer deposition with carbon nanocoils as templates[J], Small, 2010, 6(8):910-914.
    Iijima S. Helical microtubules of graphitic carbon[J]. Nature, 1991, (354):56-58.
    Sigeo Ihara, Satoshi Itoh, Jun-ichi Kitakami. Toroidal forms of graphitic carbon[J]. Phys ReV B 1993, 47(19):12908-12911.
    Dunlap B I. Connecting carbon tubules[J]. Phys Rev B, 1992, 46(2):1933-1936.
    Zhang M, Li J. Carbon nanotube in different shapes[J]. Materials Today, 2009, 12(6):12-18.
    Ahmed Shaikjee, Neil J Coville. The synthesis, properties and uses of carbon materials with helical morphology[J]. Journal of Advanced Research, 2012, 3:195-223.
    Szabó A, Fonseca A, Nagy J B. Synthesis, properties and applications of helical carbon nanotubes[J]. Fullerenes, Nanotubes and Carbon Nanostructures, 2005, 13(S1):139-146.
    Tang N J, Wen J F, Zhang Y. Helical carbon nanotubes:Catalytic particle size-dependent growth and magnetic properties[J]. Acs Nano, 2010, 4(1):241-250.
    Prabhakar R B. Electrical properties and applications of carbon nanotube structures[J]. Journal of Nanoscience and Nanotechnology, 2007, 7:1-29.
    Wen J F, Zhang Y, Tang N J, et al. Synthesis, photoluminescence, and magnetic properties of nitrogen doping helical carbon nanotubes[J]. J Phys Chem C, 2011, 115:12329-12334.
    Qi X S, Zhong W, Deng Y, et al. Characterization and magnetic properties of helical carbon nanotubes and carbon nanobelts synthesized in acetylene decomposition over Fe-Cu nanoparticles at 450oC[J]. J Phys Chem C, 2009, 113:15934-15940.
    R Byron Pipes, Pascal Hubert. Helical carbon nanotube arrays:mechanical properties[J]. Composites Science and Technology, 2002, 62(3):419-428.
    Philip G C, Phaedon A. Nanotubes for Electronics[J]. Scientific American, 2000:62-69.
    Kong J, Zhou C, Morpurgo A. Synthesis, integration, and electrical properties of individual single-walled carbon nanotubes[J]. Appl Phys A, 1999, 69:305-308.
    Moretadha J K, Jaber S A, Fyath R S. Performance investigation of loop and helical carbon nanotube antennas[J]. Journal of Emerging Trends in Computing and Information Sciences, 2012, 3(12):1606-1613.
    Itoh S, Ihara S, Kitakami J. Toroidal form of carbon C360[J]. Phys ReV B, 1993, 47(3):1703-1704.
    Itoh S, Ihara S, Kitakami J. Helically coiled cage forms of graphitic carbon[J]. Phys Rev B, 1993, 48(8):5643-5647.
    Itoh S, Ihara S. Toroidal forms of graphitic carbon II Elongated tori[J]. Phys Rev B, 1993, 48(11):8323-8328.
    Zhang X B, Zhang X F, Bernaerts D, et al. The texture of catalytically grown coil-shaped carbon nanotubules[J]. Europhys Lett, 1994, 27:141-146.
    Qin Y H, Zhang Y H, Sun X. Synthesis of helical and straight carbon nanofibers by chemical vapor deposition using alkali chloride catalysts[J]. Microchim Acta, 2009, 164:425-430.
    Zhang Q, Zhao M Q, Tang D M. Carbon-nanotube-array double helices[J]. Angew Chem Int Ed, 2010, 49:3642-3645.
    Bajpai V, Dai L M, Ohashi T. Large-scale synthesis of perpendicularly aligned helical carbon nanotubes[J]. J Am Chem Soc, 2004, 126:5070-5071.
    Rao A M, Richter E, Bandow S, et al. Diameter-selective raman scattering from vibrational modes in carbon nanotubes[J]. Science, 1997, (275):187-191.
    H Kuzmany, W Plank, M Hulman, et al. Determination of SWCNT diameters from the Raman response of the radial breathing mode[J]. The European Physical Journal B, 2001,22:307-320.
    Devin Conroy, Anna Moisala, Silvana Cardoso, et al. Carbon nanotube reactor:Ferrocene decomposition, iron particle growth, nanotube aggregation and scale-up[J]. Chemical Engineering Science, 2010, (65):2965-2977.
    Kalpana Awasthi, Rajesh Kumar, Himanshu Raghubanshi. Synthesis of nano-carbon (nanotubes, nanofibres, graphene) materials[J]. Bull Mater Sci, 2011, 34(4):607-614.
    Li X S, Cao A Y, Jung Y J, et al. Bottom-up growth of carbon nanotube multilayers:unprecedented growth[J]. Nano Lett, 2005, 5(10):1997-2000.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article Views(661) PDF Downloads(578) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return