ZHANG Wen-ting, ZHANG Bao-liang, SONG Jin-liang, QI Wei, HE Xiu-jie, LIU Zhan-jun, LIAN Peng-fei, HE Zhou-tong, GAO Li-na, XIA Hui-hao, LIU Xiang-dong, ZHOU Xing-tai, SUN Li-bin, WU Xin-xin. Microstructure and molten salt impregnation characteristics of a micro-fine grain graphite for use in molten salt reactors. New Carbon Mater., 2016, 31(6): 585-593. doi: 10.1016/S1872-5805(16)60034-3
Citation: ZHANG Wen-ting, ZHANG Bao-liang, SONG Jin-liang, QI Wei, HE Xiu-jie, LIU Zhan-jun, LIAN Peng-fei, HE Zhou-tong, GAO Li-na, XIA Hui-hao, LIU Xiang-dong, ZHOU Xing-tai, SUN Li-bin, WU Xin-xin. Microstructure and molten salt impregnation characteristics of a micro-fine grain graphite for use in molten salt reactors. New Carbon Mater., 2016, 31(6): 585-593. doi: 10.1016/S1872-5805(16)60034-3

Microstructure and molten salt impregnation characteristics of a micro-fine grain graphite for use in molten salt reactors

doi: 10.1016/S1872-5805(16)60034-3
Funds:  National Natural Science Foundation of China (51602336); Natural Science Foundation of Shanghai (16ZR1443400); National Natural Science Foundation of China (51572274, 11305240, 11075097, 11375108); "Strategic Priority Research Program" of the Chinese Academy of Sciences (XDA02004220).
  • Received Date: 2016-09-10
  • Accepted Date: 2016-12-26
  • Rev Recd Date: 2016-11-26
  • Publish Date: 2016-12-28
  • The microstructure and molten salt impregnation characteristics of a micro-fine grain isotropic graphite ZXF-5Q from Poco Inc. was investigated. The microstructural characteristics of the pores caused by gas evolution, calcination cracks, Mrozowski cracks, and the crystal structure were characterized by optical microscopy, mercury porosimetry, helium pycnometry, transmission electron microscopy, X-ray diffraction and Raman spectroscopy. Results show that the ZXF-5Q has uniformly-distributed pores caused by gas evolution with very small entrance diameters (~0.4 μm), and numerous lenticular Mrozowski cracks. Molten salt impregnation with a molten eutectic fluoride salt at 650℃ and 1, 3 and 5 atm, indicate that ZXF-5Q could not be infiltrated even at 5 atm due to its very small pore entrance diameter. Some scattered global salt particles found inside the ZXF-5Q are possibly formed by condensation of the fluoride salt steam during cooling.
  • loading
  • Nightingale RE. Nuclear Graphite[M]. Academic Press, 1962.
    Burchell TD. Carbon Materials for Advanced Technologies[M]. Pergamon, 1999.
    Virgil'ev YS, Kalyagina IP. Reactor Graphite[M]. Inorg Mater 2003, 39:S46-S58.
    Simmons JHW. Radiation Damage in Graphite[M]. Pergamon Press, 1965.
    Haag G, Reaktortechnik FJIfSu. Properties of ATR-2E Graphite and Property Changes Due to Fast Neutron Irradiation[M]. Forschungszentrum Jülich GmbH, Zentralbibliothek, 2005.
    Telling RH, Heggie MI. Radiation defects in graphite[J]. Philos Mag, 2007, 87(31):4797-4846.
    A technology roadmap for generation IV nuclear energy systems[R]. USDOE, GIF-002-00, 2002.
    Rosenthal MW, Haubenreich PN, Briggs RB. The development status of motten-salt dreeder reactor[R]. ORNL-4812, 1972.
    Briggs RB. Program semi annual progress report[R]. MSRE, ORNL-3708, 1964.
    Ketsten PR. Graphite behavior and its effects on MSBR perform[R]. ORNL-TM-2136, 1969.
    McCoy HE, Weir JR. Materials development for motten salts breeder reactor[R]. ORNL-TM-1854, 1967:46-56.
    Ishiyama S, Burchell TD, Strizak JP, et al. The effect of high fluence neutron irradiation on the properties of a fine-grained isotropic nuclear graphite[J]. J Nucl Mater, 1996, 230(1):1-7.
    Burchell TD, Snead LL. The effect of neutron irradiation damage on the properties of grade NBG-10 graphite[J]. J Nucl Mater, 2007, 371(1-3):18-27.
    Feng SL, Xu L, Li L, et al. Sealing nuclear graphite with pyrolytic carbon[J]. J Nucl Mater, 2013, 441(1-3):449-454.
    He XJ, Song JL, Xu L, et al. Protection of nuclear graphite toward liquid fluoride salt by isotropic pyrolytic carbon coating[J]. J Nucl Mater, 2013, 442(1-3):306-308.
    He XJ, Song JL, Tan J, et al. SiC coating:An alternative for the protection of nuclear graphite from liquid fluoride salt[J]. J Nucl Mater, 2014, 448(1-3):1-3.
    Song JL, Zhao YL, Zhang JP, et al. Preparation of binderless nanopore-isotropic graphite for inhibiting the liquid fluoride salt and Xe135 penetration for molten salt nuclear reactor[J]. Carbon, 2014, 79(0):36-45.
    Zhang BL, Xia HH, He XJ, et al. Characterization of the effects of 3-MeV proton irradiation on fine-grained isotropic nuclear graphite[J]. Carbon, 2014, 77:311-318.
    Bernardet V, Gomes S, Delpeux S, et al. Protection of nuclear graphite toward fluoride molten salt by glassy carbon deposit[J]. J Nucl Mater, 2009, 384(3):292-302.
    Wen KY, Marrow J, Marsden B. Microcracks in nuclear graphite and highly oriented pyrolytic graphite (HOPG)[J]. J Nucl Mater, 2008, 381(1-2):199-203.
    Kane J, Karthik C, Butt DP, et al. Microstructural characterization and pore structure analysis of nuclear graphite[J]. J Nucl Mater, 2011, 415(2):189-197.
    Mrozowski S. Anisotropy of thermal expansion and internal stresses in polycrystalline graphite and carbons[J]. Physical Review, 1952, 86(4):622.
    Sutton AL, Howard VC. The role of porosity in the accommodation of thermal expansion in graphite[J]. J Nucl Mater, 1962, 7(1):58-71.
    Chi S-H, Kim G-C. Comparison of 3 MeV C(+) ion-irradiation effects between the nuclear graphites made of pitch and petroleum cokes[J]. J Nucl Mater, 2008, 381(1-2):98-105.
    Tuinstra F, Koenig JL. Raman spectrum of graphite[J]. J Chem Phys, 1970, 53(3):1126-1130.
    Nikiel L, Jagodzinski PW. Raman-spectroscopic characterization of graphites-a reevaluation of spectra/structure correlation[J]. Carbon, 1993, 31(8):1313-1317.
    Jawhari T, Roid A, Casado J. Raman-spectroscopic characterization of some commercially available carbon-black materials[J]. Carbon, 1995, 33(11):1561-1565.
    Pimenta MA, Dresselhaus G, Dresselhaus MS, et al. Studying disorder in graphite-based systems by Raman spectroscopy[J]. Physical Chemistry Chemical Physics, 2007, 9(11):1276-1291.
    Knight DS, White WB. Characterization of diamond films by raman-spectroscopy[J]. Journal of Materials Research, 1989, 4(2):385-393.
    Ferrari AC, Robertson J. Interpretation of Raman spectra of disordered and amorphous carbon[J]. Phys Rev B, 2000, 61(20):14095-14107.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article Views(850) PDF Downloads(606) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return