ZHOU Zhi-wei, YAN Qin-hua, LIU Chang-hong, FAN Shou-shan. An arm-like electrothermal actuator based on superaligned carbon nanotube/polymer composites. New Carbon Mater., 2017, 32(5): 411-418. doi: 10.1016/S1872-5805(17)60132-X
Citation: ZHOU Zhi-wei, YAN Qin-hua, LIU Chang-hong, FAN Shou-shan. An arm-like electrothermal actuator based on superaligned carbon nanotube/polymer composites. New Carbon Mater., 2017, 32(5): 411-418. doi: 10.1016/S1872-5805(17)60132-X

An arm-like electrothermal actuator based on superaligned carbon nanotube/polymer composites

doi: 10.1016/S1872-5805(17)60132-X
Funds:  National Basic Research Program of China (2012CB932301); Natural Science Foundation of China (51572146)
  • Received Date: 2017-06-28
  • Accepted Date: 2017-11-13
  • Rev Recd Date: 2017-10-09
  • Publish Date: 2017-10-28
  • A superaligned carbon nanotube film embedded in polymers shows promising applications in the fields of electrothermal actuation because of their homogenous conductivity, good biocompatibility and mechanical properties. We fabricated a simple U-shaped gadget from the composite to investigate the electrothermal actuation mechanism. The gadget can curl to 730°, which is several times larger than existing actuators. A helix-shaped arm-like actuator (artificial arm) was also made from the composite, which exhibited a large twisting deformation (more than 700° twisting, 49.2% length constriction and 26.4% diameter constriction) when driven with low electrical fields (less than 500 V/m or 41 V). The actuation of the U-shaped gadget and the artificial arm can be precisely controlled by the applied voltage or electrical power. The gripping force of the clenched arm is about 4 g, 26 times its own weight. This points to a new way for manipulating objects and its potential application in the biomimetic field.
  • loading
  • Aliev A E, Oh J Y, Kozlov M E, et al. Giant-stroke, superelastic carbon nanotube aerogel muscles[J]. Science, 2009, 323(5921):1575-1578.
    Ha S M, Yuan W, Pei Q, et al. Interpenetrating polymer networks for high-performance electroelastomer artificial muscles[J]. Advanced Materials, 2006, 18(7):887-891.
    Deng J, Li J, Chen P, et al. Tunable photothermal actuators based on a pre-programmed aligned nanostructure.[J]. Journal of the American Chemical Society, 2016, 138:225-230.
    Bar-Cohen Y. Electroactive polymers as artificial muscles:a review[J]. Journal of Spacecraft and Rockets, 2002, 39(6):822-827.
    Madden J, Vandesteeg N A, Anquetil P A, et al. Artificial muscle technology:physical principles and naval prospects[J]. Ieee Journal of Oceanic Engineering, 2004, 29(3):706-728.
    Mirfakhrai T, Madden J, Baughman R H. Polymer artificial muscles[J]. Materials Today, 2007, 10(4):30-38.
    Zhou Z, Chen L, Liu C, et al. A curvature-controllable, convex-mirror actuator based on carbon nanotube film composites[J]. Carbon, 2016, 96:672-677.
    Martinez R V, Glavan A C, Keplinger C, et al. Soft actuators and robots that are resistant to mechanical damage[J]. Advanced Functional Materials, 2014, 24(20):3003-3010.
    Baughman R H. Conducting polymer artificial muscles[J]. Synthetic Metals, 1996, 78(3):339-353.
    Brochu P, Pei Q B. Advances in dielectric elastomers for actuators and artificial muscles[J]. Macromolecular Rapid Communications, 2010, 31(1):10-36.
    Zhou Z, Li Q, Chen L, et al. A large-deformation phase transition electrothermal actuator based on carbon nanotube-elastomer composites[J]. Journal of Materials Chemistry B, 2016, 4(7):1228-1234.
    Pelrine R, Kornbluh R, Pei Q B, et al. High-speed electrically actuated elastomers with strain greater than 100%[J]. Science, 2000, 287(5454):836-839.
    Pei Z Q, Yang Y, Chen Q M, et al. Mouldable liquid-crystalline elastomer actuators with exchangeable covalent bonds[J]. Nature Materials, 2014, 13(1):36-41.
    Pelrine R, Kornbluh R, Kofod G. High-strain actuator materials based on dielectric elastomers[J]. Advanced Materials, 2000, 12(16):1223-1225.
    Liu S, Liu Y, Cebeci H, et al. High electromechanical response of ionic polymer actuators with controlled-morphology aligned carbon nanotube/nafion nanocomposite electrodes[J]. Advanced Functional Materials, 2010, 20(19):3266-3271.
    Wu G, Li G H, Lan T, et al. An interface nanostructured array guided high performance electrochemical actuator[J]. Journal of Materials Chemistry A, 2014, 2(40):16836-16841.
    Chen L Z, Liu C H, Hu C H, et al. Electrothermal actuation based on carbon nanotube network in silicone elastomer[J]. Applied Physics Letters, 2008, 92(26310426).
    Hu Y, Lan T, Wu G, et al. A spongy graphene based bimorph actuator with ultra-large displacement towards biomimetic application[J]. Nanoscale, 2014, 6(21):12703-12709.
    Zeng Z, Jin H, Zhang L, et al. Low-voltage and high-performance electrothermal actuator based on multi-walled carbon nanotube/polymer composites[J]. Carbon, 2015, 84(0):327-334.
    Ebbesen T W, Lezec H J, Hiura H, et al. Electrical conductivity of individual carbon nanotubes[J]. Nature, 1996, 382(6586):54-56.
    FAN Zhuang-jun, WANG Yao, LUO Guo-hua, et al. The synergetic effect of carbon nanotubes and carbon black in a rubber system[J]. New Carbon Materials, 2008, 23(2):149-153. (范壮军, 王垚, 罗国华, 等. 碳纳米管和炭黑在橡胶体系增强的协同效应[J]. 新型炭材料, 2008, 23(2):149-153.)
    DAI Jian-feng, ZHANG Chao, WANG Qing, et al. Preparation and characterization of polymethylmethacrylate/aligned SWCNT composites with by repeated stretching[J]. New Carbon Materials, 2008, 23(3):201-204. (戴剑锋, 张超, 王青, 等. 反复拉伸法制备单壁碳纳米管定向排列的SWCNT/PMMA复合材料[J]. 新型炭材料, 2008, 23(3):201-204.)
    Hu Y, Chen W. Externally induced thermal actuation of polymer nanocomposites[J]. Macromolecular Chemistry and Physics, 2011, 212(10):992-998.
    Seo D K, Kang T J, Kim D W, et al. Twistable and bendable actuator:a cnt/polymer sandwich structure driven by thermal gradient[J]. Nanotechnology, 2012, 23(0755017).
    Hu Y, Lan T, Wu G, et al. A spongy graphene based bimorph actuator with ultra-large displacement towards biomimetic application[J]. Nanoscale, 2014, 6(21):12703-12709.
    Xu B, Jiang H Y, Li H J, et al. High strength nanocomposite hydrogel bilayer with bidirectional bending and shape switching behaviors for soft actuators[J]. RSC Advances, 2015, 5(17):13167-13170.
    Chen L, Liu C, Liu K, et al. High-performance, low-voltage, and easy-operable bending actuator based on aligned carbon nanotube/polymer composites[J]. ACS Nano, 2011, 5(3):1588-1593.
    Chen L, Weng M, Zhou Z, et al. Large-deformation curling actuators based on carbon nanotube composite:advanced-structure design and biomimetic application[J]. ACS Nano, 2015, 9(12):12189-12196.
    Li Q, Liu C, Lin Y, et al. Large-strain, multiform movements from designable electrothermal actuators based on large highly anisotropic carbon nanotube sheets[J]. ACS Nano, 2015, 9(1):409-418.
    Fan S S, Chapline M G, Franklin N R, et al. Self-oriented regular arrays of carbon nanotubes and their field emission properties[J]. Science, 1999, 283(5401):512-514.
    Liu K, Sun Y H, Chen L, et al. Controlled growth of super-aligned carbon nanotube arrays for spinning continuous unidirectional sheets with tunable physical properties[J]. Nano Letters, 2008, 8(2):700-705.
    QIU Long-bin, SUN Xue-mei, YANG Zhi-bin, et al. Preparation and application of aligned carbon nanotube/polymer composite material. Acta Chimica Sinica, 2012, 70(14):1523-1532. (丘龙斌, 孙雪梅, 仰志斌, 等. 取向碳纳米管/高分子新型复合材料的制备及应用[J]. 化学学报, 2012, 70(14):1523-1532.)
    Jiang K L, Li Q Q, Fan S S. Nanotechnology:spinning continuous carbon nanotube yarns-carbon nanotubes weave their way into a range of imaginative macroscopic applications[J]. Nature, 2002, 419(6909):801.
    Jiang K, Wang J, Li Q, et al. Superaligned carbon nanotube arrays, films, and yarns:a road to applications[J]. Advanced Materials, 2011, 23(9):1154-1161.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article Views(345) PDF Downloads(252) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return