ZHANG Hong-wei, LU Jia-min, YANG Le, HU Ming-xiang, HUANG Zheng-hong, LU Rui-tao, KANG Fei-yu. N, S co-doped porous carbon nanospheres with a high cycling stability for sodium ion batteries. New Carbon Mater., 2017, 32(6): 517-526. doi: 10.1016/S1872-5805(17)60137-9
Citation: ZHANG Hong-wei, LU Jia-min, YANG Le, HU Ming-xiang, HUANG Zheng-hong, LU Rui-tao, KANG Fei-yu. N, S co-doped porous carbon nanospheres with a high cycling stability for sodium ion batteries. New Carbon Mater., 2017, 32(6): 517-526. doi: 10.1016/S1872-5805(17)60137-9

N, S co-doped porous carbon nanospheres with a high cycling stability for sodium ion batteries

doi: 10.1016/S1872-5805(17)60137-9
Funds:  973 program of China (2015CB932500,2014CB932401);Beijing Nova Program (20161151041);National Natural Science Foundation of China (51722207);Tsinghua University Initiative Scientific Research Program (20151080367).
  • Received Date: 2017-10-26
  • Accepted Date: 2017-12-28
  • Rev Recd Date: 2017-12-08
  • Publish Date: 2017-12-28
  • Developing high-performance and low-cost anode materials is crucial for the practical use of sodium-ion batteries (SIBs) at room-temperature. Porous carbon nanospheres with a uniform diameter for use as SIB anode materials were synthesized by the hydrothermal treatment of glucose to obtain the spheres, and subsequent carbonization and modification with KOH activation and N, S co-doping during or after the activation using thiourea as the N and S sources. Nanospheres doped with N and S after KOH activation have a high initial specific capacity of 527 mAh g-1 at a current density of 20 mA g-1 and an excellent cycling stability with a 95.2% capacity retention after 1 000 cycles at a high current density of 500 mA g-1. The capacity retention rate is higher than that of most of the state-of-the-art anode materials for SIBs. This good performance is attributed to the abundant micro-pores, the enlarged interlayer spacing produced by the co-doping, and the high conductivity of the carbon nanospheres.
  • loading
  • Pan H, Hu Y S, Chen L Q. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage[J]. Energy & Environmental Science, 2013, 6(8):2338-2360.
    Wadia C, Albertus P, Srinivasan V. Resource constraints on the battery energy storage potential for grid and transportation applications[J]. Journal of Power Sources, 2011, 196(3):1593-1598.
    Zhang C J, Park S, O'Brien S E, et al. Liquid exfoliation of interlayer spacing-tunable 2D vanadium oxide nanosheets:high capacity and rate handling Li-ion battery cathodes[J]. Nano Energy, 2017, 39:151-161.
    Slater M D, Kim D, Lee E, et al. Sodium-ion batteries[J]. Advanced Functional Materials, 2013, 23(8):947-958.
    Kim S W, Seo D H, Ma X, et al. Electrode materials for rechargeable sodium-ion batteries:potential alternatives to current lithium-ion batteries[J]. Advanced Energy Materials, 2012, 2(7):710-721.
    Palomares V,Serras P, Villaluenga I, et al. Na-ion batteries, recent advances and present challenges to become low cost energy storage systems[J]. Energy & Environmental Science, 2012, 5(3):5884-5901.
    Yan D, Yu C, Zhang X, et al. Nitrogen-doped carbon microspheres derived from oatmeal as high capacity and superior long life anode material for sodium ion battery[J]. ElectrochimicaActa, 2016,191:385-91.
    Hu M, Yang L, Zhou K,et al. Enhanced sodium-ion storage of nitrogen-rich hard carbon by NaCl intercalation[J]. Carbon, 2017, 122:680-686.
    Yang L, Wang W, Hu M, et al. Ultrahigh rate binder-free Na3V2(PO4)3/carbon cathode for sodium-ion battery[J]. Journal of Energy Chemistry, 2017, https://doi.org/10.1016/j.jechem.2017.08.021.
    Wen Y, He K, Zhu Y, et al. Expanded graphite as superior anode for sodium-ion batteries[J]. Nature Communications, 2014, 5:4033.
    Ren W, Zhang H, Guan C, et al. Ultrathin MoS2 nanosheets@metalorganic framework-derived N-doped carbon nanowallarrays as sodium ion battery anode with superior cycling life and rate capability[J]. Advanced Functional Materials, 2017, 27(32):1702116.
    Chen J, Li S, Kumar V, et al. Carbon coated bimetallic sulfide hollow nanocubes as advanced sodium ion battery anode[J]. Advanced Energy Materials, 2017, 7(19):1700180.
    Li W, Hu S, Luo X, et al. Confined amorphous red phosphorus in MOF-derived N-doped microporouscarbon as a superior anode for sodium-ion battery[J]. Advanced Materials, 2017, 29(16):1605820.
    Zhang Q, Wei Y, Yang H, et al. Tunnel-structured KxTiO2 nanorods by in situ carbothermalreduction as a long cycle and high rate anode for sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(8):7009-7016.
    Xu D, Chen C, Xie J, et al. A hierarchical N/S-Codopedcarbon anode fabricated facilely from cellulose/polyanilinemicrospheres for high-performance sodium-ion batteries[J]. Advanced Energy Materials, 2016, 6(6):1501929.
    Cao Y, Xiao L, Sushko M L, et al. Sodium ion insertion in hollow carbon nanowires for battery applications[J]. Nano Letters, 2012,12(7):3783-3787.
    Li D, Zhang L, Chen H, et al. Graphene-based nitrogen-doped carbon sandwich nanosheets:a new capacitive process controlled anode material forhigh-performance sodium-ion batteries[J]. Journal of Materials Chemistry A, 2016, 4(22):8630-8635.
    Sun J, Lee H W, Pasta M, et al. Carbothermic reduction synthesis of red phosphorus-filled 3D carbon material as a high-capacity anode for sodium ion batteries[J]. Energy Storage Materials, 2016, 4:130-136.
    Wenzel S, Hara T,Janek J, et al. Room-temperature sodium-ion batteries:improving the rate capability of carbon anode materials by templating strategies[J]. Energy & Environmental Science, 2011, 4(9):3342-3345.
    Tang K, Fu L, White R J, et al. Hollow carbon nanospheres with superior rate capability for sodium-based batteries[J]. Advanced Energy Materials, 2012, 2(7):873-877.
    Ding J, Wang H, Li Z, et al. Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes[J]. ACS nano, 2013, 7(12):11004-11015.
    Wang Y X, Chou S L, Liu H K, et al. Reduced graphene oxide with superior cycling stability and rate capability for sodium storage[J]. Carbon, 2013, 57:202-208.
    Wang H G,Wu Z, Meng, F L, et al. Nitrogen-doped porous carbon nanosheets as low-cost, high-performance anode material for sodium-ion batteries[J]. Chem Sus Chem, 2013, 6(1):56-60.
    Komaba S, Murata W, Ishikawa T, et al. Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries[J]. Advanced Functional Materials, 2011, 21(20):3859-3867.
    Wei Q, Xiong F, Tan S, et al. Porous one-dimensional nanomaterials:design, fabrication and applications in electrochemical energy storage[J]. Advanced Materials, 2017, 29(20):1602300.
    Wang L, Yang C, Dou S, et al. Nitrogen-doped hierarchically porous carbon networks:synthesis and applications in lithium-ion battery, sodium-ion battery and zinc-air battery[J]. ElectrochimicaActa, 2016, 219:592-603.
    Zhang Q, Wang W, Wang Y, et al. Controllable construction of 3D-skeleton-carbon coated Na3V2(PO4)3 for high-performance sodium ion battery cathode[J]. Nano Energy, 2016, 20:11-19.
    Luo W, Zhang P, Wang X, et al. Antimony nanoparticles anchored in three-dimensional carbon network as promising sodium-ion battery anode[J]. Journal of Power Sources, 2016, 304:340-345.
    Jung Y, Zhou Y, Cha J J. Intercalation in two-dimensional transition metal chalcogenides[J]. Inorganic Chemistry Frontiers, 2016, 3(4):452-463.
    Liang Y, Yoo H D, Li Y, et al. Interlayer-Expanded Molybdenum Disulfide Nanocomposites for Electrochemical Magnesium Storage[J]. Nano Letters, 2015,15(3):2194-2202.
    Xue Y, Zhang Q, Wang W, et al. Opening two-dimensional materials for energy conversion and storage:A concept[J]. Advanced Energy Materials:1602684.
    Li Y, Hu Y, Titirici M, et al. Hard carbon microtubesmade from renewable cotton as high-performance anode material for sodium-ion batteries[J]. Advanced Energy Materials, 2016, 6(18):1600659.
    Liu Y, Fan L, Jiao L. Graphene highly scattered in porous carbon nanofibers:a binder-free and high-performance anode for sodium-ion batteries[J]. Journal of Materials Chemistry A, 2017, 5(4):1698-1705.
    Yan D, Xu X, Lu T, et al. Reduced graphene oxide/carbon nanotubes sponge:A new high capacity and long life anode material for sodium-ion batteries[J]. Journal of Power Sources, 2016, 316:132-138.
    Simone V, Boulineau A, de Geyer A, et al. Hard carbon derived from cellulose as anode for sodium ion batteries:dependence of electrochemical properties on structure[J]. Journal of Energy Chemistry, 2016, 25(5):761-768.
    Xing W, Chen Y, Wu X, et al. PEDOT:PSS-assisted exfoliation and functionalization of 2D nanosheets for high-performance organic solar cells[J]. Advanced Functional Materials, 2017, 27(32):1701622.
    Wang M, Koski K J. Reversible chemochromic MoO3 nanoribbons through zerovalent metal intercalation[J]. ACS Nano, 2015, 9(3):3226-3233.
    Li Y, Liang Y, Robles Hernandez F C, et al. Enhancing sodium-ion battery performance with interlayer-expanded MoS2-PEO nanocomposites[J]. Nano Energy, 2015, 15:453-461.
    Lee J H, Song Y S, Lim E. Transformation of amorphous to crystallized carbon[J]. Applied Physics Letters, 2017, 110(14):143104.
    Liu J, Xu Y, Cai H, et al. Double hexagonal graphene ring synthesized using a growth-etching method[J]. Nanoscale, 2016, 8(29):14178-14183.
    Zhang S, Lv W, Luo C, et al. Commercial carbon molecular sieves as a high performance anode for sodium-ion batteries[J]. Energy Storage Materials, 2016, 3:18-23.
    Liu H, Jia M, Cao B, et al. Nitrogen-doped carbon/graphene hybrid anode material for sodium-ion batteries with excellent rate capability[J]. Journal of Power Sources, 2016, 319:195-201.
    Wang P, Qiao B, Du Y, et al. Fluorine-doped carbon particles derived from lotus petioles as high-performance anode materials for sodium-ion batteries[J]. The Journal of Physical Chemistry C, 2015, 119(37):21336-21344.
    Li Y, Wang Z, Li L, et al. Preparation of nitrogen-and phosphorous co-doped carbon microspheres and their superior performance as anode in sodium-ion batteries[J]. Carbon, 2016, 99:556-563.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article Views(355) PDF Downloads(421) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return