Jude C. Anike, Kalayu Belay, Jandro L. Abot. Piezoresistive response of carbon nanotube yarns under tension: Parametric effects and phenomenology. New Carbon Mater., 2018, 33(2): 140-154. doi: 10.1016/S1872-5805(18)60331-2
Citation: Jude C. Anike, Kalayu Belay, Jandro L. Abot. Piezoresistive response of carbon nanotube yarns under tension: Parametric effects and phenomenology. New Carbon Mater., 2018, 33(2): 140-154. doi: 10.1016/S1872-5805(18)60331-2

Piezoresistive response of carbon nanotube yarns under tension: Parametric effects and phenomenology

doi: 10.1016/S1872-5805(18)60331-2
  • Accepted Date: 2018-04-28
  • Publish Date: 2018-04-28
  • Carbon nanotubes (CNTs) are inherently sensitive to mechanical strain, making them ideal for sensing in composites. Because of this they were purposefully spun into macroscopic yarns to permit their utilization in structural components. This experimental study aims to determine the effect of quasi-static strain rate, mechanical properties and geometry of the CNT yarns on their piezoresistivity. Strain rates affect the failure mechanisms and electromechanical properties of CNT yarns, with high strain rates showing increased tensile strength and a positive piezoresistivity with low strain rates favoring a higher strain-to-failure and a negative piezoresistivity. The sensitivity or gauge factor (GF) of the free CNT yarn remains relatively unchanged with varying strain rates (GFs between 0.12-0.20 at 2.5% strain) but is strongly dependent on the strain level (GFs:0.2, 0.5, 0.4 and 0.2 at 0.5, 1, 1.5 and 2.5% strains, respectively) and diameter (GFs:0.16 and 0.29 at 3% strain for~25 μm and 50 μm diameter yarns, respectively). The linearity needed for a robust sensor is favored at higher strain rates with correlation coefficients more than 0.995 compared to values less than 0.832 at lower strain rates.
  • loading
  • Abot J L, Schulz M J, Song Y, et al. Novel distributed strain sensing in polymeric materials[J]. Smart Mater Struct, 2010, 19(8):085007-1-085007-19.
    Abot J L, Song Y, Sri V M, et al. Delamination detection with carbon nanotube thread in self-sensing composite materials[J]. Compos Sci Technol, 2010, 70(7):1113-1119.
    Zhao H, Zhang Y, Bradford P D, et al. Carbon nanotube yarn strain sensors[J]. Nanotechnology, 2010, 21:305502.
    Li Y L, Kinloch I A, Windle A H. Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis[J]. Science, 2004, 304:276-278.
    Jiang K L, Li Q Q, Fan S S. Nanotechnology:spinning continuous carbon nanotube yarns-carbon nanotubes weave their way into a range of imaginative macroscopic applications[J]. Nature, 2002, 419(6909):1-801.
    Deng F, Lu W B, Zhao H B, et al. The properties of dry-spun carbon nanotube fibers and their interfacial shear strength in an epoxy composite[J]. Carbon, 2011, 49:1752-1757.
    Vigolo B, Penicaud A, Coulon C, et al. Macroscopic fibers and ribbons of oriented carbon nanotubes[J]. Science, 2000, 290(5495):1331-1334.
    Zhang M, Atkinson K R, Baughman R H. Multifunctional carbon nanotube fiber yarns by downsizing an ancient technology[J]. Science, 2004, 306:1358-1361.
    Jayasinghe C, Chakrabarti S, Schulz M J, et al. Spinning yarn from long carbon nanotube arrays[J]. Journal of Materials Research, 2011, 26:1-7.
    Koziol K, Vilatela J, Moisala A, et al. High-performance carbon nanotube fiber[J]. Science, 2007, 318(5858):1892-1895.
    Lu W, Zu M, Byun J H, et al. State of the art of carbon nanotube fibers:opportunities and challenges[J]. Adv Mater, 2012, 24(14):1805-1833.
    Wu A S, Tsu-Wei Chou. Carbon nanotube fibers for advanced composites[J]. Materials Today, 2012, 15:7-8.
    Zheng L X, Zhang X F, Li Q W, et al. Carbon-nanotube cotton for large-scale fibers[J]. Adv Mater, 2007, 19(18):2567-2570.
    Wu A S, Chou T W, Gillespie Jr J W, et al. Electromechanical response and failure behaviour of aerogel spun carbon nanotube fibres under tensile loading[J]. J Mater Chem, 2012, 22:6792-6798.
    Jayasinghe C, Li W, Song Y, et al. Nanotube responsive materials[J]. MRS Bulletin, 2010, 35(9):682-692.
    Lekawa-Raus A, Koziol KKK, Windle A H. Piezoresistive effect in carbon nanotube fibers[J]. ACS Nano, 2014, 8(11):11214-11224.
    Miao, M. Yarn spun from carbon nanotube forests:Production, structure, properties and applications[J]. Particuology, 2013, 11:378-393.
    Wang Y, Xia Y M. The effects of strain rate on the mechanical behaviour of Kevlar fibre bundles:an experimental and theoretical study[J]. Compos A, 1998, 29A:1141-1415.
    Wang Y, Xia Y M. Experimental and theoretical study on the strain rate and temperature dependence of mechanical behavior of Kevlar fiber[J]. Compos Part A. Appl S, 1999, 30(11):1251-1257.
    Zhu D J, Mobasher B, Rajan S D. Experimental study of dynamic behavior of Kevlar 49 single yarn. In:Proceedings, SEM annual conference, Indianapolis, USA[J]. Society for Experimental Mechanics, 2010:147-152.
    Schwartz P, Netravali A, Sembach S. Effects of strain rate and gauge length on the failure of ultrahigh strength polyethylene fibers[J]. Text Res J, 1986, 56(8):502-508.
    Wu A S, Nie X, Hudspeth M C, et al. Strain rate-dependent tensile properties and dynamic electromechanical response of carbon nanotube fibers[J]. Carbon, 2012:3876-3881.
    Zhang Y, Zheng L, Sun G, et al. Failure mechanisms of carbon nanotube fibers under different strain rates[J]. Carbon, 2012:2887-2893.
    Anike J C, Bajar A, Abot J L. Time-dependent effects on the coupled mechanical-electrical response of carbon nanotube yarns under tensile loading[J]. J Carbon Res, 2016, 2(1):3.
    Wang P, Zhang X, Hansen R V, et al. Strengthening and failure mechanisms of individual carbon nanotube fibers under dynamic tensile loading[J]. Carbon, 2016, 102:18-31.
    Yakobson B I, Campbell M P, Brabec C J, et al. High strain rate fracture and C-chain unraveling in carbon nanotubes[J]. Comp Mater Sci, 1997, 8(4):341-348.
    Zhan Z Y, Zhang Y N, Sun G Z, et al. The effects of catalyst treatment on fast growth of millimeter-long multiwalled carbon nanotube arrays[J]. Appl Surf Sci, 2011, 257(17):7704-7708.
    Hill F A, Havel T F, Hart A J, et al. Enhancing the tensile properties of continuous millimeter-scale carbon nanotube fibers by densification[J]. ACS Appl Mater Interfaces, 2013, 5:7198-7207.
    Gspann T S, Montinaro N, Pantano A, et al. Mechanical properties of carbon nanotube fibres:St Venant's principle at the limit and the role of imperfections[J]. Carbon, 2015, 93:1021-1033.
    Buehler M J. Mesoscale modeling of mechanics of carbon nanotubes:Self-assembly, self-folding and fracture[J]. Journal of Materials Research, 2006, 21:2855-2869.
    Cullinan M, Culpepper M. Carbon nanotube as piezoresistive microelectromechanical sensors:Theory and experiment[J]. Phys Rev B, 2010, 82:115428.
    Pan N. Development of a constitutive theory for short fiber yarns:Mechanics of staple yarn without slippage effect[J]. Textile Res J, 1992, 62(12):749-765.
    Pan N. Development of a constitutive theory for short fiber yarns. Part Ⅱ:Mechanics of staple yarn with slippage effect[J]. Textile Res J, 1993, 63(9):504-514.
    Peirce F T. Tensile tests for cotton yarns. Part 5:"Weakest link" theorems on the strength of long and of composite specimens[J]. Journal of the Textile Institute Transactions 1926, 17:355-368.
    Realff M L, Pan N, Seo M, et al. A stochastic simulation of the failure process and ultimate strength of blended continuous yarns[J]. Textile Res J, 2000, 70(5):415-430.
    Abot J L, Alosh T, Belay K. Strain dependence of electrical resistance in carbon nanotube yarns[J]. Carbon, 2014, 70:95-102.
    Obitayo W, Liu T. A review:Carbon nanotube-based piezoresistive strain sensors[J]. J Sens, 2012:652438.
    Vilatela J J, Windle A H. A multifunctional yarn made of carbon nanotubes[J]. J Eng Fiber Fabr, 2012, 7:23-28.
    Yang L, Anantram M P, Han J, et al. Band-gap change of carbon nanotubes:effect of small uniaxial and torsional strain[J]. Phys Rev B, 1999, 60(19):13874-13878.
    Berger C, Yi Y, Wang Z L, et al. Multiwalled carbon nanotubes are ballistic conductors at room temperature[J]. Applied Physics A, 2002, 74(3):363-365.
    Koratkar N, Modi A, Lass E, et al. Temperature effects on resistance of aligned multiwalled carbon nanotube films[J]. Journal of Nanoscience and Nanotechnology, 2004, 4(7):744-748.
    Li X, Levy C, Elaadil L. Multiwalled carbon nanotube film for strain sensing[J]. Nanotechnology, 2008, 19(4):045501.
    Loh K J, Kim J, Lynch J P, et al. Multifunctional layer-by-layer carbon nanotube-polyelectrolyte thin films for strain and corrosion sensing[J]. Smart Mat Struct, 2007, 16(2):429-438.
    Zu M, Li Q, Zhu Y, et al. The effective interfacial shear strength of carbon nanotube fibers in an epoxy matrix characterized by a microdroplet test[J]. Carbon, 2012:1271-1279.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article Views(345) PDF Downloads(272) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return