JIANG Ke-mao, CHENG Chao-ge, RAN Min, LU Yong-gen, WU Qi-lin. Preparation of a biochar with a high calorific value from chestnut shells. New Carbon Mater., 2018, 33(2): 183-187. doi: 10.1016/S1872-5805(18)60333-6
Citation: JIANG Ke-mao, CHENG Chao-ge, RAN Min, LU Yong-gen, WU Qi-lin. Preparation of a biochar with a high calorific value from chestnut shells. New Carbon Mater., 2018, 33(2): 183-187. doi: 10.1016/S1872-5805(18)60333-6

Preparation of a biochar with a high calorific value from chestnut shells

doi: 10.1016/S1872-5805(18)60333-6
Funds:  National Natural Science Foundation of China (60975059); Research and Innovation Project of Shanghai Municipal Education Commission(14ZZ069).
  • Received Date: 2018-01-28
  • Accepted Date: 2018-04-28
  • Rev Recd Date: 2018-04-05
  • Publish Date: 2018-04-28
  • The recovery of biomass provides a solution for solving the energy shortage problem. Chestnut shells consist of cellulose, hemicellulose and lignin, and have a low calorific value. We propose a method to produce a biochar with a high calorific value from chestnut shells by catalytic pre-oxidation and pyrolysis with sulfuric acid and urea. The pyrolysis behavior and the changes in structure and properties were investigated. Results indicate that the catalysts slow the pyrolysis reaction, leading to a high-quality char. The carbon content and calorific value are related to the pyrolysis temperature. When the chestnut shells are pyrolyzed at 750℃, the yield and calorific value of the char are 44.31 wt% and 35.48 MJ/Kg, respectively. The calorific value of the char is higher than that of first-level cleaned coal (30.00 MJ/Kg).
  • loading
  • Liu N, Huo K, Mcdowell M T, et al. Rice husks as a sustainable source of nanostructured silicon for high performance Li-ion battery anodes[J]. Scientific Reports, 2013, 3(5):1919.
    Qian K, Kumar A, Zhang H, et al. Recent advances in utilization of biochar[J]. Renewable & Sustainable Energy Reviews, 2015, 42(1):1055-1064.
    Cheng L, Guo P, Wang R, et al. Electrocapacitive properties of supercapacitors based on hierarchical porous carbons from chestnut shell[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2014, 446(5):127-133.
    Chen Y, Huang B, Huang M, et al. On the preparation and characterization of activated carbon from mangosteen shell[J]. Journal of the Taiwan Institute of Chemical Engineers, 2011, 42(5):837-842.
    Okutual C, Duman G, Ucar S, et al. Production of fungicidal oil and activated carbon from pistachio shell[J]. Journal of Analytical & Applied Pyrolysis, 2011, 91(1):140-146.
    Sakada S, Sharara M A, Ashworth A, et al. Characterization of biochar from switchgrass carbonization[J]. Energies, 2014, 7(2014):548-567.
    Sahasrabudhe A, Kapri S, Bhattacharyya S. Graphitic porous carbon derived from human hair as ‘green’ counter electrode in quantum dot sensitized solar cells[J]. Carbon, 2016, 107:395-404.
    Xu Z, Si J. Preparation of N-doped nanoporous carbon from crude biomass and its electrochemical activity[J]. Nano Brief Reports & Reviews, 2015, 11(3):1650028.
    Qu Y, Zhang Z, Zhang X, et al. Highly ordered nitrogen-rich mesoporous carbon derived from biomass waste for high-performance lithium-sulfur batteries[J]. Carbon, 2015, 84(1):399-408.
    Wu X L, Wen T, Guo H L, et al. Biomass-derived sponge-like carbonaceous hydrogels and aerogels for supercapacitors[J]. Journal of Materials Chemistry A, 2013, 2(14):3589-3597.
    Hou J, Cao C, Idrees F, et al. Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors[J]. ACS Nano, 2015, 9(3):2556-2564.
    Tan J, Chen H, Gao Y, et al. Nitrogen-doped porous carbon derived from citric acid and urea with outstanding supercapacitance performance[J]. Electrochim Acta, 2015, 178:144-152.
    Bird M I, Wurster C M, Ph D S, et al. Algal biochar——production and properties[J]. Bioresour Technol, 2011, 102(2):1886-1891.
    Wang K, Cao Y, Gu Z, et al. Nitrogen-modified biomass-derived cheese-like porous carbon for electric double layer capacitors[J]. RSC Advances, 2016, 6(32):26738-26744.
    Enders A, Hanley K, Whitman T, et al. Characterization of biochars to evaluate recalcitrance and agronomic performance[J]. Bioresour Technol, 2012, 114(3):644-653.
    Hendrix J E, Barker R H. Pyrolysis and combustion of cellulose. Ⅱ. Thermal analysis of mixtures of methyl α-D-glucopyranoside and levoglucosan with model phosphate flame retardants[J]. Journal of Applied Polymer Science, 2010, 16(1):41-59.
    Tang M M, Bacon R. Carbonization of cellulose fibers-I. Low temperature pyrolysis[J]. Carbon, 1964, 2(3):211-220.
    Özçimen D, Ersoy-Meriçboyu A. Characterization of biochar and bio-oil samples obtained from carbonization of various biomass materials[J]. Renewable Energy, 2010, 35(6):1319-1324.
    Zhai Y, Xu B, Yun Z, et al. Nitrogen-doped porous carbon from Camellia oleifera shells with enhanced electrochemical performance[J]. Materials Science & Engineering C, 2015, 61:449-456.
    Yuan H, Lu T, Huang H, et al. Influence of pyrolysis temperature on physical and chemical properties of biochar made from sewage sludge[J]. Journal of Analytical & Applied Pyrolysis, 2015, 112:284-289.
    Byrne C E, Nagle D C, Byrne C E, et al. Carbonization of wood for advanced materials applications[J]. Carbon, 1997, 35(2):259-266.
    Paris O, Zollfrank C, Zickler G A. Decomposition and carbonization of wood biopolymers-a microstructural study of softwood pyrolysis[J]. Carbon, 2005, 43(1):53-66.
    Lai Y H, Lv M X, Ma C Y, et al. Research on pyrolysis characteristics of agricultural residues under liner heating temperature[J]. Combustion Science and Technology, 2001, 7(3):245-248.
    Babu B V, Chaurasia A S. Heat transfer and kinetics in the pyrolysis of shrinking biomass particle[J]. Chemical Engineering Science, 2004, 59(59):1999-2012.
    Wen L I, Bai Z Q, Bai J, et al. Decomposition kinetics of hydrogen bonds in coal by a new method of in-situ diffuse reflectance FT-IR[J]. Journal of Fuel Chemistry & Technology, 2011, 39(5):321-327.
    Basak B U, Esin A V, Funda A, et al. Synthetic fuel production from tea waste:Characterisation of bio-oil and bio-char[J]. Fuel, 2010, 89(1):176-184.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article Views(410) PDF Downloads(299) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return