JIN Zu-er, WANG Jian-long, ZHAO Ri-jie, GUAN Tao-tao, ZHANG Dong-dong, LI Kai-xi. Synthesis of S, N co-doped porous carbons from polybenzoxazine for CO2 capture. New Carbon Mater., 2018, 33(5): 392-401. doi: 10.1016/S1872-5805(18)60347-6
Citation: JIN Zu-er, WANG Jian-long, ZHAO Ri-jie, GUAN Tao-tao, ZHANG Dong-dong, LI Kai-xi. Synthesis of S, N co-doped porous carbons from polybenzoxazine for CO2 capture. New Carbon Mater., 2018, 33(5): 392-401. doi: 10.1016/S1872-5805(18)60347-6

Synthesis of S, N co-doped porous carbons from polybenzoxazine for CO2 capture

doi: 10.1016/S1872-5805(18)60347-6
Funds:  National Natural Science Foundation of China (U1510204, 51672291); Shanxi Province Coal-based Key Scientific and Technological Project (MD2014-09); Shanxi Province Key Research and Development Plan (201603D321023).
  • Received Date: 2018-07-10
  • Accepted Date: 2018-11-01
  • Rev Recd Date: 2018-09-29
  • Publish Date: 2018-10-28
  • S, N co-doped porous carbons were synthesized from polybenzoxazine through solidification, carbonization and KOH activation using 4-cyanophenol, thiourea and formaldehyde as the monomers and a triblock copolymer (Pluronic F127) as a soft template. The samples were characterized by FT-IR, SEM, N2 adsorption, elemental analysis and XPS. Results indicate that the activated samples had high surface areas of 1 511.6-2 385.1 m2 g-1 with a large number of micropores and abundant sulfur and nitrogen functionalities. The templated samples had apparently lower contents of sulfur, nitrogen and oxygen than the un-templated ones due to the easy escape of volatile sulfur, nitrogen and oxygen compounds during carbonization and KOH activation. CO2 uptake had contributions from both physical and chemical adsorption and depended on the volume of narrow micropores less than 0.8 nm and the numbers of basic sulfur and nitrogen functional groups. The un-templated sample activated at 600℃ had the highest CO2 uptakes of 6.96 and 4.55 mmol g-1 under 1 bar at 0 and 25℃, respectively, and was highly selective for CO2/N2 separation and had a high recyclable stability for CO2 capture.
  • loading
  • Hao G P, Jin Z Y, Sun Q, et al. Porous carbon nanosheets with precisely tunable thickness and selective CO2 adsorption properties[J]. Energy & Environmental Science, 2013, 6(12):3740-3747.
    Leung D Y C, Caramanna G, Maroto-Valer M M. An overview of current status of carbon dioxide capture and storage technologies[J]. Renewable and Sustainable Energy Reviews, 2014, 39:426-443.
    Hao G P, Li W C, Qian D, et al. Structurally designed synthesis of mechanically stable poly(benzoxazine-co-resol)-based porous carbon monoliths and their application as high-performance CO2 capture sorbents[J]. Journal of the American Chemical Society, 2011, 133(29):11378-11388.
    Lee K M, Lim Y H, Park C J, et al. Adsorption of low-level CO2 using modified zeolites and activated carbon[J]. Industrial & Engineering Chemistry Research, 2012, 51(3):1355-1363.
    Lu W G, Sculley J P, Yuan D Q, et al. Carbon dioxide capture from air using amine-grafted porous polymer networks[J]. The Journal of Physical Chemistry C, 2013, 117(8):4057-4061.
    Wriedt M, Sculley J P, Yakovenko A A, et al. Low-energy selective capture of carbon dioxide levels by a pre-designed elastic single-molecule trap[J]. Angewandte Chemie-International Edition, 2012, 51(39):9804-9808.
    Hao G P, Li W C, Lu A H. Novel porous solids for carbon dioxide capture[J]. Journal of Materials Chemistry, 2011, 21(18):6447-6451.
    Daff T D, Collins S P, Dureckova H, et al. Evaluation of carbon nanoscroll materials for post-combus-tion CO2 capture[J]. Carbon, 2016, 101:218-225.
    Sun Y H, Zhao J H, Wang Y L, et al. Sulfur-doped millimeter-sized microporous activated carbon sph-eres derived from sulfonated poly(styrene-divinylbenzene) for CO2 capture[J]. The Journal of Physical Chemistry C, 2017, 121(18):10000-10009.
    Wickramaratne N P, Jaroniec M. Importance of small micropores in CO2 capture by phenolic resin-based activated carbon spheres[J]. Journal of Materials Chemistry A, 2013, 1(1):112-116.
    Qian D, Lei C, Wang E M, et al. A method for creating microporous carbon materials with excellent CO2-adsorption capacity and selectivity[J]. ChemSusChem, 2014, 7(1):291-298.
    Zhao Y F, Zhao L, Yao K X, et al. Novel porous carbon materials with ultrahigh nitrogen contents for selective CO2 capture[J]. Journal of Materials Chemistry, 2012, 22(37):19726-19731.
    Bandosz T J, Ren T Z. Porous carbon modified with sulfur in energy related applications[J]. Carbon, 2017,118:561-577.
    Li P, Xing C, Qu S J, et al. Carbon dioxide capturing by nitrogen-doping microporous carbon[J]. ACS Sustainable Chemistry & Engineering, 2015, 3(7):1434-1442.
    Babu D J, Bruns M, Schneider R, et al. Understanding the influence of N-doping on the CO2 adsorption characteristics in carbon nanomaterials[J]. The Journal of Physical Chemistry C, 2017, 121(1):616-626.
    Shahtalebi A, Mar M, Guérin K, et al. Effect of fluorine doping on structure and CO2 adsorption in silicon carbide-derived carbon[J]. Carbon, 2016, 96:565-577.
    Zhao W X, Han S, Zhuang X D, et al. Cross-linked polymer-derived B/N co-doped carbon materials with selective capture of CO2[J]. Journal of Materials Chemistry A, 2015, 3(46):23352-23359.
    Wan L, Wang J L, Feng C, et al. Synthesis of polybenzoxazine based nitrogen-rich porous carbons for carbon dioxide capture[J]. Nanoscale, 2015, 7(15):6534-6544.
    Houshmand A, Daud W M A W, Shasfeeyan M S. Exploring potential methods for anchoring amine groups on the surface of activated carbon for CO2 adsorption[J]. Separation Science and Technology, 2011, 46(7):1098-1112.
    Wu Z X, Webley P A, Zhao D Y. Post-enrichment of nitrogen in soft-templated ordered mesoporous carbon materials for highly efficient phenol removal and CO2 capture[J]. Journal of Materials Chemistry, 2012, 22(22):11379-11389.
    Wang J C, Senkovska I, Oschatz M, et al. Imine-linked polymer-derived nitrogen-doped microporous carbons with excellent CO2 capture properties[J]. ACS Applied Materials & Interfaces, 2013, 5(8):3160-3167.
    Li R, Ren X Q, Feng X, et al. A highly stable metal-and nitrogen-doped nanocomposite derived from Zn/Ni-ZIF-8 capable of CO2 capture and separation[J]. Chemical Communications, 2014, 50(52):6894-6897.
    Liu R L, Ji W J, He T, et al. Fabrication of nitrogen-doped hierarchically porous carbons through a hyb-rid dual-template route for CO2 capture and haemoperfusion[J]. Carbon, 2014, 76:84-95.
    Xia Y D, Zhu Y Q, Tang Y. Preparation of sulfur-doped microporous carbons for the storage of hy-drogen and carbon dioxide[J]. Carbon, 2012, 50(15):5543-5553.
    Kwiatkowski M, Policicchio A, Seredych M, et al. Evaluation of CO2 interactions with S-doped nano-porous carbon and its composites with a reduced GO:effect of surface features on an apparent physical adsorption mechanism[J]. Carbon, 2016, 98:250-258.
    Seredych M, Rodríguez-Castelloón E, Bandosz T J. Alterations of S-doped porous carbon-rGO com-posites surface features upon CO2 adsorption at ambient conditions[J]. Carbon, 2016, 107:501-509.
    Li X F, Xue Q Z, Chang X, et al. Effects of sulfur doping and humidity on CO2 capture by graphite split pore:A theoretical study[J]. ACS Applied Materials & Interfaces, 2017, 9(9):8336-8343.
    Seredych M, Jagiello J, Bandosz T J. Complexity of CO2 adsorption on nano-porous sulfur-doped carbons-Is surface chemistry an important factor?[J]. Carbon, 2014, 74:207-217.
    Bandosz T J, Seredych M, Rodriguez-Castellon E, et al. Evidence for CO2 reactive adsorption on nanoporous S-and N-doped carbon at ambient conditions[J].Carbon, 2016, 96:856-863.
    Demir K D, Kiskan B, Aydogan B, et al. Thermally curable main-chain benzoxazine prepolymers via polycondensation route[J]. Reactive & Functional Polymers, 2013, 73(2):346-359.
    Thubsuang U, Ishida H, Wongkasemjit S, et al. Advanced and economical ambient drying method for controlled mesopore polybenzoxazine-based carbon xerogels:Effects of non-ionic and cationic surfactant on porous structure[J]. Journal of Colloid and Interface Science, 2015, 459:241-249.
    Wang M W, Jeng R J, Lin C H. Study on the ring-opening polymerization of benzoxazine through multisubstituted polybenzoxazine precursors[J]. Macromolecules, 2015, 48(3):530-535.
    Wang P, Zhang G, Li Z C, et al. Improved electrochemical performance of LiFePO4@N-doped carbon nanocomposites using polybenzoxazine as nitrogen and carbon sources[J]. ACS Applied Materials & Interfances, 2016, 8(40):26908-26915.
    Barwe S, Andronescu C, Masa J, et al. Polybenzoxazine-derived N-doped carbon as matrix for powder-based electro-catalysts[J]. ChemSusChem, 2017, 10(12):2653-2659.
    Semerci E, Kiskan B, Yagci Y. Thiol reactive polybenzoxazine precursors:A novel route to functional polymers by thiol-oxazine chemistry[J]. European Polymer Journal, 2015, 69:636-641.
    Kou J H, Sun L B. Nitrogen-doped porous carbons derived from carbonization of a nitrogen-containing polymer:efficient adsorbents for selective CO2 capture[J]. Industrial & Engineering Chemistry Research, 2016, 55(41):10916-10925.
    Wang S, Li W C, Zhang L, et al. Polybenzoxazine-based monodisperse carbon spheres with low-thermal shrinkage and their CO2 adsorption properties[J]. Journal of Materials Chemistry A, 2014, 2(12):4406-4412.
    Wan L, Wang J L, Sun Y H, et al. Polybenzoxazine-based nitrogen-containing porous carbons for high-performance supercapacitor electrodes and carbon dioxide capture[J]. RSC Advances, 2015, 5(7):5331-5342.
    Lei Y L, Luo Y J, Chen F, et al. Sulfonation process and desalination effect of poly-styrene/PVDF semi-interpenetrating polymer network cation exchange membrane[J]. Polymers, 2014, 6(7):1914-1928.
    Wang J C, Kaskel S. KOH activation of carbon-based materials for energy storage[J]. Journal of Materials Chemistry, 2012, 22(45):23710-23725.
    Cai J J, Qi J B, Yang C P, et al. Poly(vinylidene chloride)-based carbon with ultrahigh microporosity and outstanding performance for CH4 and H2 storage and CO2 Capture[J]. ACS Applied Materials & Interfaces, 2014, 6(5):3703-3711.
    Li Y, Zou B, Hu C W, et al. Nitrogen-doped porous carbon nanofiber webs for efficient CO2 capture and conversion[J]. Carbon, 2016, 99:79-89.
    Han C, Bo X J, Zhang Y F, et al. One-pot synthesis of nitrogen and sulfur co-doped onion-like meso-porous carbon vesicle as an efficient metal-free catalyst for oxygen reduction reaction in alkaline solution[J]. Journal of Power Sources, 2014, 272:267-276.
    Gu W T, Sevilla M, Magasinski A, et al. Sulfur-containing activated carbons with greatly reduced con-tent of bottle neck pores for double-layer capacitors:a case study for pseudocapacitance detection[J]. Energy & Environmental Science, 2013, 6(8):2465-2476.
    Tian W J, Zhang H Y, Sun H Q, et al. Heteroatom (N or N-S)-doping induced layered and honeycomb microstructures of porous carbons for CO2 capture and energy applications[J]. Advanced Functional Materials, 2016, 26(47):8651-8661.
    Zhao X C, Zhang Q, Zhang B S, et al. Dual-heteroatom-modified ordered mesoporous carbon:Hydrothermal functionalization, structure and its electrochemical performance[J]. Journal of Materials Chemistry, 2012, 22(11):4963-4969.
    Seema H, Kemp K C, Le N H, et al. Highly selective CO2 capture by S-doped microporous carbon materials[J]. Carbon, 2014, 66:320-326.
    Wang M, Fan X Q, Zhang L X, et al. Probing the role of O-containing groups in CO2 adsorption of N-doped porous activated carbon[J]. Nanoscale, 2017, 9(44):17593-17600.
    Bai R Z, Yang M L, Hu G S, et al. A new nanoporous nitrogen-doped highly-efficient carbonaceous CO2 sorbent synthesized with inexpensive urea and petroleum coke[J]. Carbon, 2015, 81:465-473.
    Fan X Q, Zhang L X, Zhang G B, et al. Chitosan derived nitrogen-doped microporous carbons for high performance CO2 capture[J]. Carbon, 2013, 61:423-430.
    Sevillan M, Fuertes A B. Sustainable porous carbons with a superior performance for CO2 capture[J]. Energy & Environmental Science, 2011, 4(5):1765-1771.
    Gu S, He J Q, Zhu Y L, et al. Facile carbonization of microporous organic polymers into hierarchically porous carbon stargeted for effective CO2 uptake at low pressures[J]. ACS Applied Materials & Inter-faces, 2016, 8(28):18383-18392.
    Plaza M G, González A S, Pis J J, et al. Production of microporous biochars by single-step oxidation:Effect of activation conditions on CO2 capture[J]. Applied Energy, 2014, 114(SI):551-562.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article Views(389) PDF Downloads(203) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return