FAN Zhen, Cao Min, YANG Wen-bin, ZHU Shi-peng, FENG Zhi-hai. The evolution of microstructure and thermal conductivity of mesophase pitch-based carbon fibers with heat treatment temperature. New Carbon Mater., 2019, 34(1): 38-43. doi: 10.1016/S1872-5805(19)60002-8
Citation: FAN Zhen, Cao Min, YANG Wen-bin, ZHU Shi-peng, FENG Zhi-hai. The evolution of microstructure and thermal conductivity of mesophase pitch-based carbon fibers with heat treatment temperature. New Carbon Mater., 2019, 34(1): 38-43. doi: 10.1016/S1872-5805(19)60002-8

The evolution of microstructure and thermal conductivity of mesophase pitch-based carbon fibers with heat treatment temperature

doi: 10.1016/S1872-5805(19)60002-8
Funds:  Key Laboratory of Advanced Functional Composite Materials Foundation.
  • Received Date: 2019-01-02
  • Accepted Date: 2019-02-20
  • Rev Recd Date: 2019-01-30
  • Publish Date: 2019-02-28
  • The evolution of microstructure and morphology of mesophase pitch-based carbon fibers (MPCFs) with heat treatment temperature (HTT) was investigated by SEM, TEM, Raman spectroscopy and XRD. The thermal conductivity of the MPCFs was examined by a modified 3ω method. Results indicate that the degree of graphitization and the thermal conductivity of the MPCFs increase with HTT. The thermal conductivity of the MPCFs reaches 518 W/m·K at a HTT of 3000℃. The thermal conductivity of MPCFs varies linearly with HTT in two distinct ranges, 1000-2000 and 2300-3000℃, that respectively correspond to the growth and orientation of graphite crystallites.
  • loading
  • Sihn S, Ganguli S, Anderson D P, et al. Enhancement of through-thickness thermal conductivity of sandwich construction using carbon foam[J]. Composites Science and Technology, 2012, 72(7):767-773.
    Silva C, University T A, Station C, et al. In-plane thermal conductivity in thin carbon fiber composites[J]. Journal of Thermophysics & Heat Transfer, 2015, 21(3):460-467.
    Li T Q, Xu Z H, Hu Z J, et al. Application of a high thermal conductivity C/C composite in a heat-redistribution thermal protection system[J]. Carbon, 2010, 48(3):924-925.
    Golecki I, Xue L, Leung R, et al. Properties of high thermalconductivity carbon-carbon composites for thermal management applications[C]. High temperature electronic materials, devices and sensors conference. USA:Allied-Signal Inc., Morristown NJ, 1998:190-195.
    Manocha L M, Warrier A, Manocha S, et al. Thermophysical properties of densified pitch based carbon/carbon materials-I. Unidirectional composites[J]. Carbon, 2006, 44(3):480-487.
    Hino T, Akiba M. Japanese development of fusion reaction plasma components[J]. Fusion Engineering and Design, 2000, 49:97-105.
    Murakami M, Nishkin K, Nakamura K, et al. High-quality and highly oriented graphite block from polycondensation polymer films[J]. Carbon, 1992, 30(2):255-262.
    Glass D E. Ceramic matrix composite (CMC) thermal protection systems (TPS) and hot structures for hypersonic vehicles[C]. The 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, 2008:AIAA-2008-2682.
    Edie D D, Pitch and Mesophase Fibers[M]. In:Figueiredo(Eds.), Carbon Fibers, Filaments and Composites, Kluwer Academic Publishers, Boston, 1990:43-72.
    Edie D D, Stoner E G. The Effect of Microstructure and Shape on Carbon Fiber Properties[M]. In:Buckley J D, Edie D D(Eds.), Carbon-Carbon Materials and Composites, Noyes Publications, New York, 1993:41-69.
    Feng Z H, Fan Z, Kong Q, et al. Effect of high temperature on the structure and thermal conductivity of 2D carbon/carbon composites with a high thermal conductivity[J]. New Carbon Materials, 2014, 29(5):357-362.
    Xiao M, Du X S, Meng Y Z, et al. The influence of thermal treatment conditions on the structures and electrical conduct ivies of graphite oxide[J]. New Carbon Materials, 2004, 19(2):92-96.
    Bamborin M Y, Yartsev D V, Kolesnikov S A. Effect of high-temperature treatment on carbon-carbon composite material X-ray structural properties and thermal conductivity[J]. Refractories & Industrial Ceramics, 2013, 54(4):319-323.
    Fan Z, Yu L Q, Li W, et al. Design and preparation of carbon/carbon composites with high thermal conductivity[J]. Materials China, 2017, 36(5):369-376.
    Yuan G M. Research on preparation of carbon materials with high thermal conductivity[D]. Dissertation for Ph. D, Wuhan University of Science and Technology, 2012.
    Wang Z L, Tang D W, Zhang W G. Simultaneous measurements of the thermal conductivity, thermal capacity and thermal diffusivity of an individual carbon fiber[J]. Journal of Physics D-Applied Physics, 2007, 15(40):4686-4690.
    Qiu L, Zheng X H, Zhu J, et al. The effect of grain size on the lattice thermal conductivity of an individual polyacrylonitrile-based carbon fiber[J]. Carbon, 2013, 51:265-273.
    Klett J W. Heat transfer in carbon/carbon composite materials[D]. Dissertation for Ph. D, Clemson University, 1994.
    Katagiri G, Ishida H, Ishitani A. Raman spectra of graphite edge planes[J]. Carbon, 1988, 26(4):565-571.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article Views(420) PDF Downloads(285) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return