ZHANG Lin-wen, ZHOU Sheng-ju, CHEN Meng-jun, YIN Ke-yang, LI Hong-guang. Hierarchically-organized C60 crystals obtained from a liquid/liquid interfacial precipitation method by using 1,2,3,4-tetrahydronaphthalene as a solvent. New Carbon Mater., 2019, 34(3): 238-246. doi: 10.1016/S1872-5805(19)60013-2
Citation: ZHANG Lin-wen, ZHOU Sheng-ju, CHEN Meng-jun, YIN Ke-yang, LI Hong-guang. Hierarchically-organized C60 crystals obtained from a liquid/liquid interfacial precipitation method by using 1,2,3,4-tetrahydronaphthalene as a solvent. New Carbon Mater., 2019, 34(3): 238-246. doi: 10.1016/S1872-5805(19)60013-2

Hierarchically-organized C60 crystals obtained from a liquid/liquid interfacial precipitation method by using 1,2,3,4-tetrahydronaphthalene as a solvent

doi: 10.1016/S1872-5805(19)60013-2
Funds:  National Natural Science Foundation of China (61474124).
  • Received Date: 2019-03-30
  • Accepted Date: 2019-06-27
  • Rev Recd Date: 2019-06-01
  • Publish Date: 2019-06-28
  • C60 crystals have potential applications in the optoelectronics, photoconducting devices and templated synthesis fields. However, their preparation is complex. A simple liquid-liquid interfacial precipitation method was used to fabricate hierarchically-organized C60 crystals with various topographic characteristics, using 1,2,3,4-tetrahydronaphthalene as a good solvent, and isopropanol, ethanol or methanol as a poor solvent. Results indicate that the morphology and shape of the as-prepared C60 crystals vary according to the solvent combination and the ratio of good to poor solvents. The SEM images of fractured surfaces and XRD patterns of the crystals reveal that the crystals are formed by the hierarchical organization of C60 molecules at the molecular level to nanocrystals that are assembled into micrometer crystals. The crystals are composed solely of C60 molecules, without polymerization and solvents, which are arranged in a face-centered cubic lattice. The surface roughness is increased by post washing with ethanol. The methodology described here is advantageous over the high-temperature conversion and solvent annealing methods reported previously.
  • loading
  • Shrestha L K, Hill J P, Miyazawa K, et al. Mixing antisolvents induced modulation in the morphology of crystalline C60[J]. J Nanosci Nanotechnol, 2012, 12:6380-6384.
    Shrestha, L K, Ji Q, et al. Fullerene nanoarchitectonics:From zero to higher dimensions[J]. Chem Asian J, 2013, 8:1662-1679.
    Macovez R. Physical properties of organic fullerene cocrystals[J]. Front Mater, 2018, 4:1-7.
    Li H Y, Fan C C, Vosgueritchian M, et al. Solution-grown aligned C60single-crystals for field-effect transistors[J]. J Mater Chem C, 2014, 2:3617-3624.
    Li H Y, Tee B C, Cha J J, et al. High-mobility field-effect transistors from large-area solution-grown aligned C60 single crystals[J]. J Am Chem Soc, 2012, 134:2760-2765.
    Ogawa K, Kato T, Ikegami A, et al. Electrical properties of field-effect transistors based on C60 nanowhiskers[J]. Appl Phys Lett, 2006, 88:1-3.
    P R Somani, Somani S P, Umeno M. Toward organic thick film solar cells:Three dimensional bulk heterojunction organic thick film solar cell using fullerene single crystal nanorods[J]. Appl Phys Lett, 2007, 91:173503.
    Wang Q, Zhang Y, Miyazawa K, et al. Improved fullerene nanofiber electrodes used in direct methanol fuel cells[J]. J Phys:Conf Ser, 2009, 159:1-5.
    Takeya H, Kato R, Wakahara T, et al. Preparation and superconductivity of potassium-doped fullerene nanowhiskers[J]. Mater Res Bull, 2013, 48:343-345.
    Shrestha R G, Shrestha L K, Khan A H, et al. Demonstration of ultrarapid interfacial formation of 1D fullerene nanorods with photovoltaic properties[J]. Acs Appl Mater Interfaces, 2014, 6:15597-15603.
    Rana M, Reddy R B, Rath B B, et al. C60-mediated molecular shape sorting:Separation and purification of geometrical isomers[J]. Angew Chem Int Ed, 2014, 53:13523-13527.
    Wang L, Liu B B, Yu S D, et al. Highly enhanced luminescence from single-crystalline C60·1m-xylene nanorods[J]. Chem Mater, 2006, 18:4190-4194.
    Shin H S, Yoon S M, Tang Q, et al. Highly selective synthesis of C60 disks on graphite substrate by a vapor-solid process[J]. Angew Chem Int Ed, 2008, 47:693-696.
    Kim J, Park C, Park J E, et al. Vertical crystallization of C60 nanowires by solvent vapor annealing process[J]. Acs Nano, 2013, 7:9122-9128.
    Liu H B, Li Y L, Jiang L, et al. Imaging as-grown. fullerene nanotubes by template technique[J]. J Am Chem Soc, 2002, 124:13370-13371.
    Wang L, Liu B, Liu D Y, et al. Synthesis of thin, rectangular C60 nanorods using m-xylene as a shape controller[J]. Adv Mater, 2006, 18:1883-1888.
    Geng J F, Zhou W Z, Skelton P, et al. Crystal structure and growth mechanism of unusually long fullerene (C60) nanowires[J]. J Am Chem Soc, 2008, 130:2527-2534.
    Park C, Song H J, Choi H C. The critical effect of solvent geometry on the determination of fullerene (C60) self-assembly into dot, wire and disk structures[J]. Chem Commun, 2009, 32:4803-4805.
    Yao M, Andersson B M, Stenmark P, et al. Synthesis and growth mechanism of differently shaped C60 nano/microcrystals produced by evaporation of various aromatic C60 solutions[J]. Carbon, 2009,47:1181-1188.
    Gnanaprakasa T J, Sridhar D, Beck W J, et al. Graphene mediated self-assembly of fullerene nanorods[J]. Chem Commun, 2015, 51:1858-1861.
    Muralidharan K. Graphene mediated self-assembly of fullerene nanorods[J]. Chem Commun, 2015, 51:1858-1861.
    Miyazawa K, Kuwasaki Y, Obayashi A, et al. C60 nanowhiskers formed by the liquid-liquid interfacial precipitation method[J]. J Mater Res, 2002, 17:83-88.
    Sathish M, Miyazawa K, Sasaki T. Nanoporous fullerene nanowhiskers[J]. Chem Mater, 2007, 19:2398-2400.
    Sathish M, Miyazawa K. Size-tunable hexagonal fullerene (C60) nanosheets at the liquid-liquid interface[J]. J Am Chem Soc, 2007, 129:13816-13817.
    Ji H X, Hu J S, Tang Q X, et al. Controllable preparation of submicrometer single-crystal C60 rods and tubes trough concentration depletion at the surfaces of seeds[J]. J Phys Chem C, 2007, 111:10498-10502.
    Sathish M, Miyazawa K, Hill J P, et al. Solvent engineering for shape-shifter pure fullerene (C60)[J]. J Am Chem Soc, 2009, 131:6372-6373.
    Wakahara T, Miyazawa K, Nemoto Y, et al. Diameter controlled growth of fullerene nanowhiskers and their optical properties[J]. Carbon, 2011, 49:4644-4649.
    Shrestha L K, Yamauchi Y, Hill J P, et al. Fullerene crystals with bimodal pore architectures consisting of macropores and mesopores[J]. J Am Chem Soc, 2013, 135:586-589.
    Shrestha L K, Hill J P, Tsuruoka T, et al. Surfactant-assisted assembly of fullerene (C60) nanorods and nanotubes formed at a liquid-liquid interface[J]. Langmuir, 2013, 29:7195-7202.
    Rana M, Bharathanatha R R, Gautam U K. Kinetically stabilized C60-toluene solvate nanostructures with a discrete absorption edge enabling supramolecular topotactic molecular exchange[J]. Carbon, 2014, 74:44-53.
    Tan Z, Masuhara A, Kasai H, et al. Multibranched C60 micro/nanocrystals fabricated by reprecipitation method[J]. Jpn J Appl Phys, 2008, 47:1426-1428.
    Penterman S J, Singh A, Zipfel W R, et al. Anisometric colloidal fullerene rod and platelet solvates with enhanced photoluminescence[J]. Adv Optical Mater, 2014, 2:1024-1030.
    Jeong J Y, Kim W S, Park S I, et al. Synthesis and characterization of various-shaped C60 microcrystals using alcohols as antisolvents[J]. J Phys Chem C, 2010, 114:12976-12981.
    Wei L, Yao J N, Fu H B. Solvent-assisted self-assembly of fullerene into single-crystal ultrathin microribbons as highly sensitive uv-visible photodetectors[J]. ACS Nano, 2013, 7:7573-7582.
    Zheng S, Lu X. Formation kinetics and photoelectrochemical properties of crystalline C70 one-dimensional microstructures[J]. Rsc Advances, 2015, 5:38202-38208.
    Penterman S J, Watson C M L. Anisometric C60 fullerene colloids assisted by structure-directing agent[J]. CrystEngComm, 2016, 18:1775-1781.
    Cha S I, Miyazawa K, Kim J D. Vertically well-aligned C60 microtube crystal array prepared using a solution-based one-step process[J]. Chem Mater, 2008, 20:1667-1669.
    Zhang C, Wang J, Wang J J, et al. Supramolecular gel-assisted formation of fullerene nanorods[J]. Chem Eur J, 2012, 18:14954-14956.
    Vimalanathan K, Shrestha R G, Zhang Z. Surfactant-free fabrication of fullerene C60 nanotubules under shear[J]. Angew Chem Int Ed, 2017, 56:8398-8401.
    Ruoff R S, Tse D S, Malhotra R, et al. Solubility of C60 in a variety of solvents[J]. J Phys Chem, 1993, 97:3379-3383.
    Bairi P, Minami K, Nakanishi W, et al. Hierarchically structured fullerene C70 cube for sensing volatile aromatic solvent vapors[J]. ACS Nano, 2016, 10:6631-6637.
    Shrestha L K, Shrestha R G, Yamauchi Y, H et al. Nanoporous carbon tubes from fullerene crystals as theπ[WTB1] -electron carbon source[J]. Angew Chem Int Ed, 2015, 54:951-955.
    Yao M, Fan X, Liu D, et al. Synthesis of differently shaped C70 nano/microcrystals by using various aromatic solvents and their crystallinity-dependent photoluminescence[J]. Carbon, 2012, 50:209-215.
    David W, Ibberson R M, Mattewman J C, et al. Crystal structure and bonding of ordered C60[J]. Nature, 1991,353:147-149.
    Sathish M, Miyazawa K. Synthesis and characterization of fullerene nanowhiskers by liquid-liquid interfacial precipitation:influence of C60 solubility[J]. Molecules, 2012, 17:3858-3865.
    Wang K A, Rao A M, Eklund P C. Observation of higher-order infrared modes in solid C60 films[J]. Phys Rev B, 1993, 48:11375-11380.
    Bethune D S, Meijer G, Tang W C, et al. Vibrational raman and infrared spectra of chromatographically separated C60 and C70 fullerene clusters[J]. Chem Phys Lett, 1991, 179:181-186.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article Views(286) PDF Downloads(164) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return