LI Ye, LIU Shi-tai, SUN Jian-ming, LI Shuang, CHEN Jun-lin, ZHAO Yan. Effects of the oxygen content of reduced graphene oxide on the mechanical and electromagnetic interference shielding properties of carbon fiber/reduced graphene oxide-epoxy composites. New Carbon Mater., 2019, 34(5): 489-498. doi: 10.1016/S1872-5805(19)60026-0
Citation: LI Ye, LIU Shi-tai, SUN Jian-ming, LI Shuang, CHEN Jun-lin, ZHAO Yan. Effects of the oxygen content of reduced graphene oxide on the mechanical and electromagnetic interference shielding properties of carbon fiber/reduced graphene oxide-epoxy composites. New Carbon Mater., 2019, 34(5): 489-498. doi: 10.1016/S1872-5805(19)60026-0

Effects of the oxygen content of reduced graphene oxide on the mechanical and electromagnetic interference shielding properties of carbon fiber/reduced graphene oxide-epoxy composites

doi: 10.1016/S1872-5805(19)60026-0
  • Received Date: 2019-07-02
  • Accepted Date: 2019-11-04
  • Rev Recd Date: 2019-09-02
  • Publish Date: 2019-10-28
  • Unidirectional carbon fiber/reduced graphene oxide nanosheet-epoxy laminate composites (CF/RGONs-epoxy) were produced by impregnating the CFs with epoxy acetone solutions containing RGONs, followed by solvent evaporation and curing at 180℃ under 0.6 MPa. The RGONs were prepared by the Hummers method and reduced to different oxygen contents using hydrazine monohydrate by adjusting the reduction temperature. The effect of the content of RGONs on the mechanical properties and electromagnetic interference (EMI) shielding effectiveness of the composites was investigated. Results indicate that in contrast to the detrimental effect of GO on the flexural and thermal properties, the addition of RGONs improves the mechanical property and EMI shielding effectiveness of the composites without sacrificing their thermal properties. RGONs with a relatively lower oxygen content show more apparent mechanical reinforcement while RGONs with a relatively higher oxygen content show a more obvious improvement on EMI shielding effectiveness. The improved interfacial properties are mainly ascribed to the toughening effects of the RGONs.
  • loading
  • Qian H, Greenhalgh E S, Shaffer M S P, et al. Carbon nanotube-based hierarchical composites: A review[J]. J Mater Chem, 2010, 20(23): 4751-4752.
    Chou T W, Gao L, Thostenson E T, et al. An assessment of the science and technology of carbon nanotube-based fibers and composites[J]. Compos Sci Technol, 2010, 70(1): 1-9.
    Bekyarova E, Thostenson E T, Yu A, et al. Multiscale carbon nanotube-carbon fiber reinforcement for advanced epoxy composites[J]. Langmuir, 2007, 23(7): 3970-3974.
    Davis D C, Wilkerson J W, Zhu J, et al. Improvements in mechanical properties of a carbon fiber epoxy composite using nanotube science and technology[J]. Compos Struct, 2010, 92(11): 265-2.
    Yavari F, Rafiee M A, Rafiee J, et al. Dramatic increase in fatigue life in hierarchical graphene composites[J]. ACS Applied Materials & Interfaces, 2010, 2(10): 2738-2743.
    Day R J, Rodrigez J V. Investigation of the micromechanics of the microbond test[J]. Composites Science and Technology, 1998, 58(6): 907-914.
    Zhang X, Fan X, Yan C, et al. Interfacial microstructure and properties of carbon fiber composites modified with graphene oxide[J]. Acs Applied Materials & Interfaces, 2012, 4(3): 1543.
    Chen L, Jin H, Xu Z, et al. A design of gradient interphase reinforced by silanized graphene oxide and its effect on carbon fiber/epoxy interface[J]. Materials Chemistry & Physics, 2014, 145(1-2): 186-196.
    Hadden C M, Klimek-Mcdonald D R, Pineda E J, et al. Mechanical properties of graphene nanoplatelet/carbon fiber/epoxy hybrid composites: Multiscale Modeling and Experiments[J]. Carbon, 2015, 95:100-112.
    Liang J, Wang Y, Huang Y, et al. Electromagnetic interference shielding of graphene/epoxy composites[J]. Carbon, 2009, 7(3): 922-925.
    Rafiee M A, Rafiee J, Wang Z, et al. Enhanced mechanical properties of nanocomposites at low graphene content[J]. ACS Nano 2009, 3(12): 3884-3890.
    Liu M, Duan Y, Wang Y, et al. Diazonium functionalization of graphene nanosheets and impact response of aniline modified graphene/bismaleimide nanocomposites[J]. Materials & Design 2014, 53: 466-474.
    Liu Q, Zhou X, Fan X, et al. Mechanical and thermal properties of epoxy resin nanocomposites reinforced with graphene oxide[J]. Polymer-Plastics Technology and Engineering, 2012, 51(3): 251-256.
    Wang S, Tambraparni M, Qiu J, et al. Thermal expansion of graphene composites[J]. Macromolecules, 2009, 42(14): 5251-5255.
    Li Y, Zhao Y, Sun J, et al. Mechanical and electromagnetic interference shielding properties of carbon fiber/graphene nanosheets/epoxy composite[J]. Polymer Composites, 2016, 37(8): 2494-2502.
    Park S, An J, Potts J R, et al. Hydrazine-reduction of graphite-and graphene oxide[J]. Carbon, 2011, 49(9): 3019-3023.
    Stankovich S, Dikin D A, Piner R D, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide[J]. Carbon, 2007, 45(7): 1558-1565.
    Bekyarova E, Thostenson E T, Yu A, et al. Functionalized single-walled carbon nanotubes for carbon fiber-epoxy composites[J]. J Phys Chem C, 2007, 111(48): 17865-17871.
    Yan Z, Yuexin D, Lu Y, et al. The dispersion of SWCNTs treated by dispersing agents in glass fiber reinforced polymer composites[J]. Compos Sci Technol, 2009, 69(13): 2115-2118.
    Garcia EJ, Wardle BL, John Hart A. Joining prepreg composite interfaces with aligned carbon nanotubes[J]. Compos Part A-Appl S 2008, 39(6): 1065-1070.
    Qian H, Bismarck A, Greenhalgh ES, et al. Hierarchical composites reinforced with carbon nanotube grafted fibers: The potential assessed at the single fiber level[J]. Chem Mater, 2008, 20(5): 1862-1869.
    An Q, Rider A N, Thostenson E T. Hierarchical composite structures prepared by electrophoretic deposition of carbon nanotubes onto glass fibers[J]. ACS Appl Mat Interfaces, 2013, 5(6): 2022-2032.
    Lee SB, Choi O, Lee W, et al. Processing and characterization of multi-scale hybrid composites reinforced with nanoscale carbon reinforcements and carbon fibers[J]. Compos Part A-Appl S, 2011, 42(4): 337-344.
    Luo YF, Zhao Y, Duan YX. Surface and wettability property analysis of CCF300 carbon fiber with different sizing or without sizing[J]. Mater Design 2011, 32(2): 941-946.
    Sun P, Zhao Y, Luo YF, et al. Effect of temperature and cyclic hygrothermal aging on the interlaminar shear strength of carbon fiber/bismaleimide (BMI) composite[J]. Mater Design 2011, 32(8): 4341-4347.
    Hummers Jr, Offeman RE. Preparation of graphitic oxide[J]J. Am. Chem. Soc.,1958, 80(6): 1339-1339.
    Wang Y, Zhao Y, Bao TJ, et al. Preparation of Ni-reduced graphene oxide nanocomposites by Pd-activated electroless deposition and their magnetic properties[J]. Appl Surf Sci,2012, 258(22): 8603-8608.
    Park S, An J, Piner RD, et al. Aqueous suspension and characterization of chemically modified graphene sheets[J]. Chem Mater, 2008, 20(21): 6592.
    Greve L, Pickett A K, Payen F. Experimental testing and phenomenological modeling of the fragmentation process of braided carbon/epoxy composite tubes under axial and oblique impact[J]. Compos Part B-Eng, 2008, 39(7-8): 1221-1232.
    Netravali A N, Henstenburg R B, Phoenix S L. Interfacial shear strength studies usingthe single-filament-composite test I: Experiments on graphite fibers in epoxy[M]. Polym Com-Posite, 1989,10(4): 226-241.
    Kislev T, Marom G, Berglund L, et al. On the nature of the opaque cylindrical regions formed at fiber break sites in a fragmentation test[J]. Adv Compos Mater, 2002, 11(1): 7-13.
    Botelho E C, Pardini L C, Rezende M C. Hygrothermal effects on the shear properties of carbon fiber/epoxy composites[J]. J Adv Mater, 2006, 41(21): 7111-7118.
    Kelly A, Tyson W R. Tensile properties of fiber-reinforced metals: Copper/tungsten and copper/molybdenum[J]. J Mech Phys Solids, 1965, 13(6): 329-350.
    Khalili A, Kromp K. Statistical properties of Weibull estimators[J]. J Mater Sci 1991, 26: 6741-6752.
    Singh A P, Gupta B K, Mishra M, et al. Multiwalled carbon nanotube/cement composites with exceptional electromagnetic interference shielding properties[J]. Carbon, 2013, 56: 86-96.
    Ohlan A, Singh K, Chandra A, et al. Microwave absorption behavior of core-shell structured poly (3, 4-ethylenedioxy thiophene)-barium ferrite nanocomposites[J]. ACS applied materials & interfaces, 2010, 2(3): 927-933.
    Singh A P, Garg P, Alam F, et al. Phenolic resin-based composite sheets filled with mixtures of reduced graphene oxide,γ-Fe2O3 and carbon fibers for excellent electromagnetic interference shielding in the X-band[J]. Carbon, 2012, 50(10): 3868-3875.
    Zhamu A, Hou Y, Zhong W H, et al. Properties of a reactive-graphitic-carbon-nanofibers-reinforced epoxy[J]. Polyn Composite, 2007, 28(5): 605-611.
    Wen B, Wang X X, Cao W Q, et al. Reduced graphene oxides:the thinnest and most lightweight materials with highly efficient microwave attenuation performances of the carbon world[J]. Nanoscale, 2014, 6(11): 5754-5761.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article Views(600) PDF Downloads(168) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return