LIU Ben, ZHANG Dong-qing, LI Xiang-fen, GUO Xiao-hui, SHI Jing, LIU Zhan-jun, GUO Quan-gui. The microstructures and properties of graphite flake/copper composites with high volume fractions of graphite flake. New Carbon Mater., 2020, 35(1): 58-65. doi: 10.1016/S1872-5805(20)60475-9
Citation: LIU Ben, ZHANG Dong-qing, LI Xiang-fen, GUO Xiao-hui, SHI Jing, LIU Zhan-jun, GUO Quan-gui. The microstructures and properties of graphite flake/copper composites with high volume fractions of graphite flake. New Carbon Mater., 2020, 35(1): 58-65. doi: 10.1016/S1872-5805(20)60475-9

The microstructures and properties of graphite flake/copper composites with high volume fractions of graphite flake

doi: 10.1016/S1872-5805(20)60475-9
Funds:  Key Research and Development Plan of Shanxi Province (201603D121016).
  • Received Date: 2019-10-20
  • Accepted Date: 2020-04-02
  • Rev Recd Date: 2020-01-10
  • Publish Date: 2020-02-29
  • Graphite flake (average lateral size of 292 μm and average thickness of 13 μm)/copper composites with high volume fractions (72.08%-93.34%) of graphite flake were produced by a vacuum hot pressing method. Results show that the composites are anisotropic due to the alignment of the surface planes of the graphite flakes perpendicular to the pressing direction. With increasing volume fraction of graphite flakes, the density of the composites decreased from 4.07 to 2.63 g cm-3, with the relative density apparently decreasing when the volume fraction of the flakes is more than 82.6%. In addition, the in-plane electrical conductivity decreased from 14.71% to 2.45% of the international annealed copper standard, the in-plane coefficient of thermal expansion decreased from 6.6 to 2.2×10-6/K, the in-plane bend strength decreased from 42.48 to 14.63 MPa, and the in-plane compressive strength decreased from 45.75 to 20.46 MPa while the in-plane thermal conductivity showed a maximum of 663.73 W m-1 K-1 at a volume fraction of GF 82.6%. The maximum in-plane thermal conductivity is caused by inter-flake pores that are not fully infiltrated by Cu. The in-plane and out-of-plane thermal conductivity agree well with a modified layers-in-parallel model and a modified layers-in-series model, respectively.
  • loading
  • Luedtke A. Thermal management materials for high-performance applications[J]. Advanced Engineering Materials, 2004, 6(3):142-144.
    Zhang R, He X B, Chen Z, et al. Influence of Ti content on the microstructure and properties of graphite flake/Cu-Ti composites fabricated by vacuum hot pressing[J]. Vacuum, 2017, 141(7):265-271.
    Prieto R, Molina J M, Narciso J, et al. Fabrication and properties of graphite flakes/metal composites for thermal management applications[J]. Scripta Materialia, 2008, 59(1):11-14.
    Weber L, Tavangar R. On the influence of active element content on the thermal conductivity and thermal expansion of Cu-X (X=Cr, B) diamond composites[J]. Scripta Materialia, 2007, 57(11):988-991.
    Chen J H, Ren S B, He X B, et al. Properties and microstructure of nickel-coated graphite flakes/copper composites fabricated by spark plasma sintering[J]. Carbon, 2017, 121(9):25-34.
    Tao Z C, Guo Q G, Gao X Q, et al. Graphite fiber/copper composites with near-zero thermal expansion[J]. Materials & Design, 2012, 33(1):372-375.
    Duan K, Li L, Hu Y J, et al. Damping characteristic of Ni-coated carbon nanotube/copper composite[J]. Materials & Design, 2017, 133(11):455-463.
    Abyzov A M, Kruszewski M J, Ciupiński ?, et al. Diamond-tungsten based coating-copper composites with high thermal conductivity produced by pulse plasma sintering[J]. Materials & Design, 2015, 76(7):97-109.
    Gao X, Yue H Y, Guo E J, et al. Mechanical properties and thermal conductivity of graphene reinforced copper matrix composites[J]. Powder Technology. 2016, 301(11):601-607.
    Wejrzanowski T, Grybczuk M, Chmielewski M, et al. Thermal conductivity of metal-graphene composites[J]. Materials & Design, 2016, 99(6):163-173.
    Tjong S C. Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets[J]. Materials Science and Engineering:R:Reports, 2013, 74(10):281-350.
    Bai H, Xue C, Lyu J L, et al. Thermal conductivity and mechanical properties of flake graphite/copper composite with a boron carbide-boron nano-layer on graphite surface[J]. Composites, Part A, 2018, 106(3):42-51.
    Liu Q, He X B, Ren S B, et al. Thermophysical properties and microstructure of graphite flake/copper composites processed by electroless copper coating[J]. Journal of Alloys and Compounds, 2014, 587(3):255-259.
    Ren S B, Chen J H, He X B, et al. Effect of matrix-alloying-element chromium on the microstructure and properties of graphite flakes/copper composites fabricated by hot pressing sintering[J]. Carbon, 2018, 127(2):412-423.
    Chen J K, Huang I S. Thermal properties of aluminum-graphite composites by powder metallurgy[J]. Composites Part B, 2013, 44(1):698-703.
    Ren S B, Hong Q N, Chen J H, et al. The influence of matrix alloy on the microstructure and properties of (flake graphite+diamond)/Cu composites by hot pressing[J]. Journal of Alloys and Compounds, 2015, 652(12):351-357.
    Che Q L, Zhang J J, Chen X K, et al. Spark plasma sintering of titanium-coated diamond and copper-titanium powder to enhance thermal conductivity of diamond/copper composites[J]. Materials Science in Semiconductor Processing, 2015, 33(5):67-75.
    Xue C, Bai H, Tao P F, et al. Thermal conductivity and mechanical properties of flake graphite/Al composite with a SiC nanolayer on graphite surface[J]. Materials & Design, 2016, 108(100):250-258.
    Truong H V, Zinsmeister G E. Experimental study of heat transfer in layered composites[J]. International Journal of Heat and Mass Transfer, 1978, 21(7):905-909.
    Progelhof R C, Throne J L, Ruetsch R R. Methods for predicting the thermal conductivity of composite systems:a review[J]. Polymeric Materials:Science and Engineering Division:1976, 16(9):615-625.
    Hasselman D P H, Donaldson K Y, Thomas J R, et al. Thermal conductivity of vapor-liquid-solid and vapor-solid silicon carbide whisker-reinforced lithium aluminosilicate glass-ceramic composites[J]. Journal of the American Chemical Society, 1996, 79(3):742-748.
    Nan C W, Birringer R, Clarke D R, et al. Effective thermal conductivity of particulate composites with interfacial thermal resistance[J]. Journal of Applied Physics, 1997, 81(10):6692-6699.
    Swartz E T, Pohl R O. Thermal boundary resistance[J]. Reviews of Modern Physics, 1989, 61(1):605-668.
    Jagannadham K. Thermal conductivity of copper-graphene composite films synthesized by electrochemical deposition with exfoliated graphene platelets[J]. Metallurgical and Materials Transactions B, 2012, 43(2):316-324.
    Ueno T, Yoshioka T, Ogawa J I, et al. Highly thermal conductive metal/carbon composites by pulsed electric current sintering[J]. Synthetic Metals, 2009, 159(21):2170-2172.
    Prieto R, Molina J M, Narciso J, et al. Thermal conductivity of graphite flakes-SiC particles/metal composites[J]. Composites Part A:Applied Science and Manufacturing, 2011, 42(12):1970-1977.
    Xiao J K, Zhang L, Zhou K C, et al. Micro scratch behavior of copper-graphite composites[J]. Tribology International, 2013, 57(1):38-45.
    Liu Z J, Guo Q G, Shi J L, et al. Graphite blocks with high thermal conductivity derived from natural graphite flake[J]. Carbon, 2008, 46(3):414-421.
    Yuan G M, Li X K, Dong Z J, et al. Graphite blocks with preferred orientation and high thermal conductivity[J]. Carbon, 2012, 50(1):175-182.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article Views(506) PDF Downloads(140) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return