LIN Jia-long, SU Shi-ming, HE Yan-bing, KANG Fei-yu. Improving the thermal and mechanical properties of an alumina-filled silicone rubber composite by incorporating carbon nanotubes. New Carbon Mater., 2020, 35(1): 66-72. doi: 10.1016/S1872-5805(20)60476-0
Citation: LIN Jia-long, SU Shi-ming, HE Yan-bing, KANG Fei-yu. Improving the thermal and mechanical properties of an alumina-filled silicone rubber composite by incorporating carbon nanotubes. New Carbon Mater., 2020, 35(1): 66-72. doi: 10.1016/S1872-5805(20)60476-0

Improving the thermal and mechanical properties of an alumina-filled silicone rubber composite by incorporating carbon nanotubes

doi: 10.1016/S1872-5805(20)60476-0
Funds:  National Natural Science Foundation of China (51672156).
  • Received Date: 2019-09-29
  • Accepted Date: 2020-04-02
  • Rev Recd Date: 2020-01-15
  • Publish Date: 2020-02-29
  • Carbon nanotubes (CNTs) can be used to improve the thermal and mechanical properties of composites because of their excellent characteristics. Methyl vinyl silicone rubber matrix composites filled with alumina (Al2O3) powder and CNTs were fabricated by a conventional mechanical blending method. The effects of the mass fraction of Al2O3 powder, surface modification of Al2O3 powder by silanization with dodecyltrimethoxysilane and the addition of CNTs on the thermal conductivity, Young's modulus and hardness of the composites were investigated. Results showed that a higher mass fraction of Al2O3 powder results in a higher thermal conductivity of the composites. When the mass fraction of Al2O3 powder was fixed, the thermal conductivity, Young's modulus and hardness of the composites were obviously improved by surface modification of the powder and adding a small amount of CNTs. A combination of the modified Al2O3 filler and CNT filler improves the interfacial interaction between the fillers and rubber matrix by the formation of better heat conduction channels and network structures in the rubber matrix, thereby improving the thermal conductivity and mechanical properties of the composites.
  • loading
  • Frogley M D, Ravich D, Wagner H D. Mechanical properties of carbon nanoparticle-reinforced elastomers[J]. Composites Science & Technology, 2003, 63(11):1647-1654.
    Moniruzzaman M, Winey K I. Polymer nanocomposites containing carbon nanotubes[J]. Macromolecules, 2006, 39(16):5194-5205.
    Kumluta? Dilek, Tavman I H, Turhan Çoban M. Thermal conductivity of particle filled polyethylene composite materials[J]. Composites Science & Technology, 2003, 63(1):113-117.
    Mu Q, Feng S, Diao G. Thermal conductivity of silicone rubber filled with ZnO[J]. Polymer Composites, 2010, 28(2):125-130.
    Kim E S, Kim E J, Shim J H, et al. Thermal stability and ablation properties of silicone rubber composites[J]. Journal of Applied Polymer Science, 2008, 110(2):1263-1270.
    Kim E S, Lee T H, Shin S H, et al. Effect of incorporation of carbon fiber and silicon carbide powder into silicone rubber on the ablation and mechanical properties of the silicone rubber-based ablation material[J]. Journal of Applied Polymer Science, 2011, 120(2):831-838.
    Fan W, Feng G, Zhao J W. Research and application development of thermal conductivity polymer composites[J]. Engineering Plastics Application, 2011, 39(12):101-104.
    Wang F, Li Y, Wang D. Adhesion enhancement for liquid silicone rubber and different surface by organosilane and Pt catalyst at room temperature[J]. Bulletin of Materials Science, 2013, 36(6):1013-1017.
    Kang D W, Yeo H G, Lee K S. Preparation and characteristics of liquid silicone rubber nanocomposite containing ultrafine magnesium ferrite powder[J]. Journal of Inorganic & Organometallic Polymers, 2004, 14(1):73-84.
    Simon M W, Stafford K T, Ou D L. Nanoclay reinforcement of liquid silicone rubber[J]. Journal of Inorganic & Organometallic Polymers & Materials, 2008, 18(3):364-373.
    Zhou W Y, Qi S H, Zhao H Z, et al. Thermally conductive silicone rubber reinforced with boron nitride particle[J]. Polymer Composites, 2010, 28(1):23-28.
    Jia M, Peinemann K V, Behling R D. Molecular sieving effect of the zeolite-filled silicone rubber membranes in gas permeation[J]. Journal of Membrane Science, 1991, 57(2-3):289-292.
    Wang F, Zhang P, Gao M. Improvement in the electric field distribution of silicone rubber composite insulators by non-linear fillers[C]//20138th International Forum on Strategic Technology (IFOST). IEEE, 2013.
    Wang Z H, Lu Y L, Liu J, et al. Preparation of nano-zinc oxide/EPDM composites with both good thermal conductivity and mechanical properties[J]. Journal of Applied Polymer Science, 2010, 119(2):1144-1155.
    Wang Z H, Lu Y L, Ding J B, et al. Preparation of nano-reinforced thermal conductive natural rubber composites[J]. Polymer Composites, 2016, 37(3):380-384.
    Kemaloglu S, Ozkoc G, Aytac A. Properties of thermally conductive micro and nano-size boron nitride reinforced silicon rubber composites[J]. Thermochimica Acta, 2010, 499(1):40-47.
    Pongsa U, Somwangthanaroj A. Effective thermal conductivity of 3,5-diaminobenzoyl-functionalized multiwalled carbon nanotubes/epoxy composites[J]. Journal of Applied Polymer Science, 2013, 130(5):3184-3196.
    Costa P, Silva J, Ansón-Casaos A, et al. Effect of carbon nanotube type and functionalization on the electrical, thermal, mechanical and electromechanical properties of carbon nanotube/styrene-butadiene-styrene composites for large strain sensor applications[J]. Composites Part B, 2014, 61(52):136-146.
    Chen X H, Song H H. Multi-walled carbon nanotube filled SBR rubber composites[J]. New Carbon Materials, 2004, 19(3):214-218.
    Li Z G, Chen H, Zhu Z H, et al. Study on thermally conductive ESBR vulcanizates[J]. Polymer Bulletin, 2011, 67(6):1091-1104.
    Fan Z J, Wang Y, Luo G H, et al. The synergetic effect of carbon nanotubes and carbon black in a rubber system[J]. New Carbon Materials, 2008, 23(2):149-153.
    Zhang X G, Gai P X, Zhang B K, et al. Thermal conductivity of rubber composite materials with a hybrid AlN/carbon fiber filler[J]. Chinese Science Bulletin, 2018, 63(23):2403-2410.
    Zhou W Y, Qi S H, Tu C C, et al. Effect of the particle size of Al2O3 on the properties of filled heat-conductive silicone rubber[J]. Journal of Applied Polymer Science, 2010, 104(2):1312-1318.
    Li X Q, Hu J X, Wu S Q, et al. The Effect of Al2O3/Carbon Fibers on the Properties of EPDM/MVQ Blends[J]. Special Purpose Rubber Products, 2014(6):1-4.
    Cheng X T, Jiang H W. Surface modification of alumina and its application in thermal conductivity silicone potting[J]. Silicone Material, 2012, 26(3):148-152.
    Akil Md H. Effect of various coupling agents on properties of alumina-filled PP composites[J]. Journal of Reinforced Plastics and Composites, 2006, 25(7):745-759.
    Namitha L K, Chameswary J, Ananthakumar S, et al. Effect of micro- and nano-fillers on the properties of silicone rubber-alumina flexible microwave substrate[J]. Ceramics International, 2013, 39(6):7077-7087.
    Zha J W, Zhu Y H, Li W K, et al. Low dielectric permittivity and high thermal conductivity silicone rubber composites with micro-nano-sized particles[J]. Applied Physics Letters, 2012, 101(6):062905.
    Chen Y Z, Lin Y, Luo Y F, et al. Morphology and performance of styrene butadiene rubber filled with modified graphite nanoplatelet and carbon black[J]. Polymers for Advanced Technologies, 2016, 27(6):830-840.
    Lin Y, Liu S Q, Peng J, et al. The filler-rubber interface and reinforcement in styrene-butadiene rubber composites with graphene/silica hybrids:A quantitative correlation with the constrained region[J]. Composites Part A Applied Science & Manufacturing, 2016, 86:19-30.
    Mao Y Y, Wen S P, Chen Y L, et al. High-performance graphene oxide-based rubber composites[J]. Scientific Reports, 2013, 3(1):2508.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article Views(600) PDF Downloads(114) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return