LI Jing, ZOU Pei-chao, YAO Wen-tao, LIU Peng, KANG Fei-yu, YANG Cheng. An asymmetric supercapacitor based on a NiO/Co3O4@NiCo cathode and an activated carbon anode. New Carbon Mater., 2020, 35(2): 112-120. doi: 10.1016/S1872-5805(20)60478-4
Citation: LI Jing, ZOU Pei-chao, YAO Wen-tao, LIU Peng, KANG Fei-yu, YANG Cheng. An asymmetric supercapacitor based on a NiO/Co3O4@NiCo cathode and an activated carbon anode. New Carbon Mater., 2020, 35(2): 112-120. doi: 10.1016/S1872-5805(20)60478-4

An asymmetric supercapacitor based on a NiO/Co3O4@NiCo cathode and an activated carbon anode

doi: 10.1016/S1872-5805(20)60478-4
Funds:  Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program (2017BT01N111); Shenzhen Geim Graphene Center, the National Nature Science Foundation of China (51578310); Guangdong Province Science and Technology Department (2015A030306010); Shenzhen Government (JCYJ20170412171720306).
  • Received Date: 2020-01-25
  • Accepted Date: 2020-04-28
  • Rev Recd Date: 2020-03-18
  • Publish Date: 2020-04-28
  • Pseudocapacitive metal oxide active materials are promising for use in high performance supercapacitors. However, their poor electrical conductivity greatly hinders their practical application. We formed NiO and Co3O4 active materials on the surface of a highly conductive NiCo nanowire membrane current collector by a simple air oxidation method to fabricate a self-supported flexible NiO/Co3O4@NiCo electrode. This significantly improves electron transport at the interface between the current collector and the active NiO/Co3O4. Furthermore, the reticular nanowire network facilitates ion transportation and releases strain caused during charge and discharge. Due to this unique structural characteristic, the NiO/Co3O4@NiCo electrode delivers a high specific capacitance of 1.36 F cm-2 at a current density of 5 mA cm-2, and excellent cycling stability with a capacitance retention of 96.95% after 10 000 cycles. An asymmetric supercapacitor was assembled using the NiO/Co3O4@NiCo as the cathode and an activated carbon electrode as the anode, which delivered an energy density of 0.32 mWh cm-2 at a power density of 8 mW cm-2. Even at a high power density of 40 mW cm-2, an energy density of 0.17 mWh cm-2 was achieved, suggesting its promising use as an efficient electrode for high performance supercapacitors.
  • loading
  • Ortaboy S, Alper J P, Rossi F, et al. MnOx-decorated carbonized porous silicon nanowire electrodes for high performance supercapacitors[J]. Energy & Environmental Science, 2017, 10(6):1505-1516.
    Xu C, Li Z, Yang C, et al. An ultralong, highly oriented nickel-nanowire-array electrode scaffold for high-performance compressible pseudocapacitors[J]. Advanced Materials, 2016, 28(21):4105-10.
    Zang X, Zhang R, Zhen Z, et al. Flexible, temperature-tolerant supercapacitor based on hybrid carbon film electrodes[J]. Nano Energy, 2017, 40:224-232.
    Xie B, Wang Y, Lai W, et al. Laser-processed graphene based micro-supercapacitors for ultrathin, rollable, compact and designable energy storage components[J]. Nano Energy, 2016, 26:276-285.
    Wang F, Wu X, Yuan X, et al. Latest advances in supercapacitors:from new electrode materials to novel device designs[J]. Chemical Society Reviews, 2017, 46(22):6816-6854.
    Wang Y, Lai W, Wang N, et al. A reduced graphene oxide/mixed-valence manganese oxide composite electrode for tailorable and surface mountable supercapacitors with high capacitance and super-long life[J]. Energy & Environmental Science, 2017, 10(4):941-949.
    Chandra Sekhar S, Nagaraju G, Yu J S. High-performance pouch-type hybrid supercapacitor based on hierarchical NiO-Co3O4-NiO composite nanoarchitectures as an advanced electrode material[J]. Nano Energy, 2018, 48:81-92.
    Xu C, Liao J, Wang R, et al. MoO3@Ni nanowire array hierarchical anode for high capacity and superior longevity all-metal-oxide asymmetric supercapacitors[J]. RSC Advances, 2016, 6(111):110112-110119.
    Liao J, Wang X, Wang Y, et al. Lavender-like cobalt hydroxide nanoflakes deposited on nickel nanowire arrays for high-performance supercapacitors[J]. RSC Advances, 2018, 8(31):17263-17271.
    Cook J B, Kim H S, Lin T C, et al. Pseudocapacitive charge storage in thick composite MoS2 nanocrystal-based electrodes[J]. Advanced Energy Materials, 2017, 7(2):1601283.
    Wu Q, Xu Y, Yao Z, et al. Supercapacitors based on flexible graphene/polyaniline nanofiber composite films[J]. ACS nano, 2010, 4(4):1963-1970.
    Zhou C, Zhang Y, Li Y, et al. Construction of high-capacitance 3D CoO@polypyrrole nanowire array electrode for aqueous asymmetric supercapacitor[J]. Nano Letters, 2013, 13(5):2078-85.
    Pang H, Li X, Zhao Q, et al. One-pot synthesis of heterogeneous Co3O4-nanocube/Co(OH)2-nanosheet hybrids for high-performance flexible asymmetric all-solid-state supercapacitors[J]. Nano Energy, 2017, 35:138-145.
    Zhai T, Wan L, Sun S, et al. Phosphate ion functionalized Co3O4 ultrathin nanosheets with greatly improved surface reactivity for high performance pseudocapacitors[J]. Advanced Materials, 2017, 29(7).
    Simon P, Gogotsi Y. Materials for electrochemical capacitors[J]. Nature Materials, 2008, 7(11):845-54.
    Raza W, Ali F, Raza N, et al. Recent advancements in supercapacitor technology[J]. Nano Energy, 2018, 52:441-473.
    Kawamori M, Asai T, Shirai Y, et al. Three-dimensional nanoelectrode by metal nanowire nonwoven clothes[J]. Nano Letters, 2014, 14(4):1932-7.
    Xu C, Liao J, Yang C, et al. An ultrafast, high capacity and superior longevity Ni/Zn battery constructed on nickel nanowire array film[J]. Nano Energy, 2016, 30:900-908.
    Yuan C, Yang L, Hou L, et al. Flexible hybrid paper made of monolayer Co3O4 microsphere arrays on rGO/CNTs and their application in electrochemical capacitors[J]. Advanced Functional Materials, 2012, 22(12):2560-2566.
    Qi J, Mao J, Zhang A, et al. Facile synthesis of mesoporous ZnCo2O4 nanosheet arrays grown on rGO as binder-free electrode for high-performance asymmetric supercapacitor[J]. Journal of Materials Science, 2018, 53(23):16074-16085.
    Sulaiman Y, Azmi M K S, Mohd Abdah M A A, et al. One step electrodeposition of poly-(3,4-ethylenedioxythiophene)/graphene oxide/cobalt oxide ternary nanocomposite for high performance supercapacitor[J]. Electrochimica Acta, 2017, 253:581-588.
    Wang G, Zhang L, Zhang J. A review of electrode materials for electrochemical supercapacitors[J]. Chemical Society Reviews, 2012, 41(2):797-828.
    Liao J, Zou P, Su S, et al. Hierarchical nickel nanowire@NiCo2S4 nanowhisker composite arrays with a test-tube-brush-like structure for high-performance supercapacitors[J]. Journal of Materials Chemistry A, 2018, 6(31):15284-15293.
    Zou P, Li J, Zhang Y, et al. Magnetic-field-induced rapid synthesis of defect-enriched Ni-Co nanowire membrane as highly efficient hydrogen evolution electrocatalyst[J]. Nano Energy, 2018, 51:349-357.
    Zou P, Chiang S W, Li J, et al. Ni@Li2O co-axial nanowire based reticular anode:Tuning electric field distribution for homogeneous lithium deposition[J]. Energy Storage Materials, 2018.
    Xing L, Dong Y, Hu F, et al. Co3O4 nanowire@NiO nanosheet arrays for high performance asymmetric supercapacitors[J]. Dalton Transactions, 2018, 47(16):5687-5694.
    Yang Q, Lu Z, Li T, et al. Hierarchical construction of core-shell metal oxide nanoarrays with ultrahigh areal capacitance[J]. Nano Energy, 2014, 7:170-178.
    Noh M, Kwon Y, Lee H, et al. Amorphous carbon-coated tin anode material for lithium secondary battery[J]. Chemistry of Materials, 2005, 17:1926-1929.
    Zuo Y, Ni J, Song J, et al. Synthesis of Co3O4/NiO nanofilms and their enhanced electrochemical performance for supercapacitor application[J]. Applied Surface Science, 2016, 370:528-535.
    Wan C, Jiao Y, Li J. Multilayer core-shell structured composite paper electrode consisting of copper, cuprous oxide and graphite assembled on cellulose fibers for asymmetric supercapacitors[J]. Journal of Power Sources, 2017, 361:122-132.
    Yao H, Zhang F, Zhang G, et al. A new hexacyanoferrate nanosheet array converted from copper oxide as a high-performance binder-free energy storage electrode[J]. Electrochimica Acta, 2019, 294:286-296.
    Bai Y, Liu R, Li E, et al. Graphene/carbon nanotube/bacterial cellulose assisted supporting for polypyrrole towards flexible supercapacitor applications[J]. Journal of Alloys and Compounds, 2019, 777:524-530.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article Views(396) PDF Downloads(237) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return