GAO Feng, QIN Shi-hui, ZANG Yun-hao, GU Jian-feng, QU Jiang-ying. Highly efficient formation of Mn3O4-graphene oxide hybrid aerogels for use as the cathode material of high performance lithium ion batteries. New Carbon Mater., 2020, 35(2): 121-130. doi: 10.1016/S1872-5805(20)60479-6
Citation: GAO Feng, QIN Shi-hui, ZANG Yun-hao, GU Jian-feng, QU Jiang-ying. Highly efficient formation of Mn3O4-graphene oxide hybrid aerogels for use as the cathode material of high performance lithium ion batteries. New Carbon Mater., 2020, 35(2): 121-130. doi: 10.1016/S1872-5805(20)60479-6

Highly efficient formation of Mn3O4-graphene oxide hybrid aerogels for use as the cathode material of high performance lithium ion batteries

doi: 10.1016/S1872-5805(20)60479-6
Funds:  National Natural Science Foundation of China (U1610114); Scientific Research Foundation for Leading Scholars in Dongguan University of Technology (GB200902-31, GC300501-072).
  • Received Date: 2020-01-03
  • Accepted Date: 2020-04-28
  • Rev Recd Date: 2020-03-26
  • Publish Date: 2020-04-28
  • We report a combined hydrothermal treatment and freeze-drying method to fabricate Mn3O4-graphene oxide (GO) hybrid aerogels for use as the cathode material of lithium ion batteries. Results indicate that the Mn3O4-GO hybrids show much better lithium storage capacity and rate capability than Mn3O4/reduced GO powder obtained by calcination of the hydrothermally treated sample dried at 300 ℃ for 30 min under an argon atmosphere. The stronger interaction between GO and Mn3O4 compared with that between reduced GO and Mn3O4 is beneficial for the improvement of utilization rate of Mn3O4 and therefore the capacity. Also the higher porosity of the Mn3O4-GO hybrids than that of the Mn3O4/reduced GO allows faster ion diffusion and therefore a higher rate capability. A typical Mn3O4-GO hybrid with a Mn3O4 content of 70 wt.% exhibits the highest specific capacity of 1 073 mA h g-1 at 100 mA g-1 and excellent cycling stability with a capacity retention rate of 85% of after 200 cycles at 800 mA g-1. The method is promising for the large-scale, environmentally friendly production of MnOx-GO hybrids for lithium ion batteries.
  • loading
  • Dong Y, Yu M, Wang Z, et al. A top-down strategy toward 3D carbon nanosheet frameworks decorated with hollow nanostructures for superior lithium storage[J]. Adv Funct Mater, 2016, 26(42):7590-7598.
    He X, Ma H, Wang J, et al. Porous carbon nanosheets from coal tar for high-performance supercapacitors[J]. J Power Sources, 2017, 357:41-46.
    Lou X W, Deng D, Lee J Y, et al. Self-supported formatnion of needlelike Co3O4 nanotubes and their application as lithium-ion battery electrodes[J]. Adv Mater, 2008, 20(2):258-262.
    Zheng F,Wei L. Synthesis of ultrafine Co3O4 nanoparticles encapsulated in nitrogen-doped porous carbon matrix as anodes for stable and long-life lithium ion battery[J]. J Alloys Compd, 2019, 790:955-962.
    Dong Y, Zhao Z, Wang Z, et al. Dually fixed SnO2 nanoparticles on graphene nanosheets by polyaniline coating for superior lithium storage[J]. ACS Appl Mater Interfaces, 2015, 7(4):2444-2451.
    Xie Z, Zhang Y, Yuan A, et al. Effects of lithium excess and SnO2 surface coating on the electrochemical performance of LiNi0.8Co0.15Al0.05O2 cathode material for Li-ion batteries[J]. J Alloys Compd, 2019, 787:429-439.
    Ren L, Yao Y, Wang K, et al. Novel one-step in situ growth of SnO2 quantum dots on reduced graphene oxide and its application for lithium ion batteries[J]. J Solid State Chem, 2019, 273:128-131.
    Li Z, Wu G, Deng S, et al. Combination of uniform SnO2 nanocrystals with nitrogen doped graphene for high-performance lithium-ion batteries anode[J]. Chem Eng J, 2016, 283:1435-1442.
    Varghese B, Reddy M V, Yanwu Z, et al. Fabrication of NiO nanowall electrodes for high performance lithium ion battery[J]. Chem Mater, 2008, 20(10):3360-3367.
    Cheng L, Qiao D, Zhao P, et al. Template-free synthesis of mesoporous succulents-like TiO2/graphene aerogel composites for lithium-ion batteries[J]. Electrochim Acta, 2019, 300:417-425.
    Li R, Yue W,Chen X. Fabrication of porous carbon-coated ZnO nanoparticles on electrochemical exfoliated graphene as an anode material for lithium-ion batteries[J]. J Alloys Compd, 2019, 784:800-806.
    Li P, Liu Y, Liu J, et al. Facile synthesis of ZnO/mesoporous carbon nanocomposites as high-performance anode for lithium-ion battery[J]. Chem Eng J, 2015, 271:173-179.
    He X, Zhao N, Qiu J, et al. Synthesis of hierarchical porous carbons for supercapacitors from coal tar pitch with nano-Fe2O3 as template and activation agent coupled with KOH activation[J]. J Mater Chem A, 2013, 1(33):9440-9450.
    Zhang T, Zheng J, Liang Z, et al. Coordination competition-driven synthesis of triple-shell hollowα-Fe2O3 microspheres for lithium ion batteries[J]. Electrochim Acta, 2019, 306:151-158.
    Deng H, Jin S, Zhan L, et al. Morphology-controlled synthesis of Fe3O4/carbon nanostructures for lithium ion batteries[J]. New Carbon Mater, 2014, 29(4):301-308.
    Yang J, Liu W, Niu H, et al. Ultrahigh energy density battery-type asymmetric supercapacitors:NiMoO4 nanorod-decorated graphene and graphene/Fe2O3 quantum dots[J]. Nano Research, 2018, 11(9):4744-4758.
    Yang J, Xiao X, Chen P, et al. Creating oxygen-vacancies in MoO3-x nanobelts toward high volumetric energy-density asymmetric supercapacitors with long lifespan[J]. Nano Energy, 2019, 58:455-465.
    Sun Y, Hu X, Luo W, et al. Reconstruction of conformal nanoscale MnO on graphene as a high-capacity and long-life anode material for lithium ion batteries[J]. Adv Funct Mater, 2013, 23(19):2436-2444.
    Li X, Zhang W, Chen B, et al. Scalable TiO2 embedded sulfur bulks@MnO2 nanosheets composite cathode for long-cyclic lithium-sulfur batteries[J]. J Solid State Chem, 2019, 270:304-310.
    Gao F, Qu J, Zhao Z, et al. Easy synthesis of MnO@GS hybrids and their performance for lithium storage[J]. New Carbon Mater, 2014, 29(4):316-321.
    Li Y, Qu J, Gao F, et al. In situ fabrication of Mn3O4 decorated graphene oxide as a synergistic catalyst for degradation of methylene blue[J]. Appl Catal B:Environ, 2015, 162(0):268-274.
    Wang H, Cui L F, Yang Y, et al. Mn3O4-graphene hybrid as a high-capacity anode material for lithium ion batteries[J]. J Am Chem Soc, 2010, 132:13978-13980.
    Li L, Guo Z, Du A, et al. Rapid microwave-assisted synthesis of Mn3O4-graphene nanocomposite and its lithium storage properties[J]. J Mater Chem, 2012, 22(8):3600-3605.
    Wang J G, Jin D, Zhou R, et al. Highly flexible graphene/Mn3O4 nanocomposite nembrane as advanced anodes for Li-Ion batteries[J]. ACS Nano, 2016, 10(6):6227-6234.
    Qu J Y, Gao F, Zhou Q, et al. Highly atom-economic synthesis of graphene/Mn3O4 hybrid composites for electrochemical supercapacitors[J]. Nanoscale, 2013, 5(7):2999-3005.
    Qu J, Shi L, He C, et al. Highly efficient synthesis of graphene/MnO2 hybrids and their application for ultrafast oxidative decomposition of methylene blue[J]. Carbon, 2014, 66:485-492.
    Nardecchia S, Carriazo D, Ferrer M L, et al. Three dimensional macroporous architectures and aerogels built of carbon nanotubes and/or graphene:Synthesis and applications[J]. Chem Soc Rev, 2013, 42(2):794-830.
    Worsley M A, Pauzauskie P J, Olson T Y, et al. Synthesis of graphene aerogel with highelectrical conductivity[J]. J Am Chem Soc, 2010, 132(40):14067-14069.
    Zhang L, Shi G. Preparation of highly conductive graphene hydrogels for fabricating supercapacitors with high rate capability[J]. J Phys Chem C, 2011, 115(34):17206-17212.
    Qin S, Liu D, Lei W, et al. Synthesis of an indium oxide nanoparticle embedded graphene three-dimensional architecture for enhanced lithium-ion storage[J]. J Mater Chem A, 2015, 3(35):18238-18243.
    Wang X, Bai H, Shi G. Size fractionation of graphene oxide sheets by pH-assisted selective sedimentation[J]. J Am Chem Soc, 2011, 133(16):6338-6342.
    Gao J, Lowe M A, Abruna H D. Spongelike nanosized Mn3O4 as a high-capacity anode material for rechargeable lithium batteries[J]. Chem Mater, 2011, 23(13):3223-3227.
    He X, Zhang H, Zhang H, et al. Direct synthesis of 3D hollow porous graphene balls from coal tar pitch for high performance supercapacitors[J]. J Mater Chem A, 2014, 2(46):19633-19640.
    Huang H W, Yu Q, Peng X S, et al. Single-unit-cell thick Mn3O4 nanosheets[J]. Chem Commun, 2011, 47(48):12831-12833.
    Gunay M, Baykal A, Toprak M S, et al. A green chemical synthesis and characterization of Mn3O4 nanoparticles[J]. J Supercond Novel Magn, 2012, 25(5):1535-1539.
    Hu H, Zhao Z, Wan W, et al. Ultralight and highly compressible graphene aerogels[J]. Adv Mater, 2013, 25(15):2219-2223.
    Gong Y, Yang S, Liu Z, et al. Graphene-network-backboned architectures for high-performance lithium storage[J]. Adv Mater, 2013, 25(29):3979-3984.
    Zhou Q, Zhao Z, Zhang Y, et al. Graphene sheets from graphitized anthracite coal:Preparation, decoration, and application[J]. Energy Fuels, 2012, 26(8):5186-5192.
    Kang H, Kulkarni A, Stankovich S, et al. Restoring electrical conductivity of dielectrophoretically assembled graphite oxide sheets by thermal and chemical reduction techniques[J]. Carbon, 2009, 47(6):1520-1525.
    Wu Z, Ren W, Wen L, et al. Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance[J]. ACS Nano, 2010, 4(6):3187-3194.
    Rao C N R, Biswas K, Subrahmanyam K S, et al. Graphene, the new nanocarbon[J]. J Mater Chem, 2009, 19(17):2457-2469.
    Marago O M, Bonaccorso F, Saija R, et al. Brownian motion of graphene[J]. ACS Nano, 2010, 4(12):7515-7523.
    Basko D M, Piscanec S, Ferrari A C. Electron-electron interactions and doping dependence of the two-phonon Raman intensity in graphene[J]. Phys Rev B, 2009, 80(16):165413-165423.
    Dresselhaus M S, Dresselhaus G, Saito R, et al. Raman spectroscopy of carbon nanotubes[J]. Phys Rep, 2005, 409(2):47-99.
    Ni Z H, Wang Y Y, Yu T, et al. Raman spectroscopy and imaging of graphene[J]. Nano Research, 2008, 1(4):273-291.
    Lee J W, Hall A S, Kim J D, et al. A facile and template-free hydrothermal synthesis of Mn3O4 nanorods on graphene sheets for supercapacitor electrodes with long cycle stability[J]. Chem Mater, 2012, 24(6):1158-1164.
    Zhu G, Wang L, Lin H, et al. Walnut-Like multicore-shell MnO encapsulated nitrogen-rich carbon nanocapsules as anode material for long-cycling and soft-packed lithium-ion batteries[J]. Adv Funct Mater, 2018, 28(18):1800003-1800010.
    Zuo Y T, Wang G, Peng J, et al. Hybridization of graphene nanosheets and carbon-coated hollow Fe3O4 nanoparticles as a high-performance anode material for lithium-ion batteries[J]. J Mater Chem A, 2016, 4(7):2453-2460.
    Zhang X, Deng Y, Wang Y, et al. Nanofibers with MoS2 nanosheets encapsulated in carbon as a binder-free anode for superior lithium storage[J]. New Carbon Mater, 2018, 33(6):554-561.
    Poizot P, Laruelle S, Grugeon S, et al. Nano-sized transition-metaloxides as negative-electrode materials for lithium-ion batteries[J]. Nature, 2000, 407(6803):496-499.
    Pasero D, Reeves N, West A R. Co-doped Mn3O4:A possible anode material for lithium batteries[J]. J Power Sources, 2005, 141(1):156-158.
    Chae C, Kim J H, Kim J M, et al. Highly reversible conversion-capacity of MnOx-loaded ordered mesoporous carbon nanorods for lithium-ion battery anodes[J]. J Mater Chem, 2012,22(34):17870-17877.
    Liu H, Li Z H, Liang Y R, et al. Facile synthesis of MnO multi-core@nitrogen-doped carbon shell nanoparticles for high performance lithium-ion battery anodes[J]. Carbon, 2015, 84:419-425.
    Li K, Shua F, Guo X, et al. High performance porous MnO@C composite anode materials for lithium-ion batteries[J]. Electrochim Acta, 2016, 188:793-800.
    Sun Y, Lee H, Seh Z W, et al. High-capacity battery cathode prelithiation to offset initial lithium loss[J]. Nature Energy, 2016, 1(1):15008-15014.
    Kong D, Li X, Zhang Y, et al. Encapsulating V2O5 into carbon nanotubes enables the synthesis of flexible high-performance lithium ion batteries[J]. Energy Environ Sci, 2016, 9(3):906-911.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article Views(298) PDF Downloads(179) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return